Authentication
250x Tipe DOCX Ukuran file 0.41 MB Source: staff.uny.ac.id
MATERI PELATIHAN GURU FISIKA SMA/MA a. Judul: Pembelajaran Gerak Rotasi dan Keseimbangan Benda Tegar Berbasis Koop untuk Meningkatkan Pemahaman Konsep Siswa SMA b. Kompetensi Dasar Setelah berpartisipasi dalam pelatihan ini diharapkan : 1) Para guru mampu memberikan inovasi pembelajaran untuk materi Gerak Rotasi dan Keseimbangan Benda Tegar untuk menciptakan pembelajaran yang menyenangkan 2) Implementasi pembelajaran mampu meningkatkan pemahaman konsep siswa tentang materi Gerak Rotasi dan keseimbangan benda Tegar c. Peta Konsep Rotasi benda tegar pengertian kinematika Sudut dan jarak Kecepatan sudut Momentum torka sudut Percepatan sudut Kekekalan momentum sudut Energi kinetik usaha d. Kata Kunci Rotasi benda tegar, sudut, jarak, kecepatan sudut, momentum sudut, torka, energi kinetik, usaha e. Strategi Pembelajaran Model : Diskusi dan kerja kelompok Metode : Diskusi Kelompok dan Pemacahan Masalah f. Media Pembelajaran : Power Point dan Animasi (Video) tentang Gerak Rotasi dan Keseimbangan Benda Tegar g. Materi Pembelajaran 1. Pengertian Benda tegar adalah sistem partikel yang mana posisi relatif partikel-partikelnya,satu dengan yang lainnya di dalam sistem, (dianggap) tetap. Akibatnya ketika benda ini berotasi terhadap suatu sumbu tetap, maka jarak setiap partikel dalam sistem terhadap sumbu rotasi akan selalu tetap. 1 Tinjau rotasi sebuah partikel dalam lintasan lingkaran dengan jejari r. Jarak yang telah ditempuh dalam selang waktu t adalah s terkait dengan sudut (dalam radian). Hubungan s dan diberikan oleh s = r. Untuk selang waktu yang sangat kecil maka besar kecepatan linier diberikan oleh: Δs=r Δθ Δt Δt 2. Kecepatan sudut Besaran ≡∂θ ≡ disebut sebagai kecepatan sudut, yang arahnya diberikan oleh ∂t arah putar tangan kanan, tegak lurus bidang lingkaran. Jadi hubungan antara kecepatan linier dengan kecepatan sudut diberikan oleh ⃗v =⃗ωxr⃗ 3. Percepatan Sudut Percepatan sudut didefinisikan sebagai laju perubahan kecepatan sudut terhadap waktu ≡∂ω ∂t Hubungan antara percepatan linier dan percepatan sudut diberikan oleh dv = r dω=rα dt dt 4. Kinematika rotasi Karena persamaan-persamaan kinematika yang menghubungkan , dan bentuknya sama dengan persamaan-persamaan kinematika gerak linear, maka dengan memakai analogi ini akan diperoleh kaitan sebagai berikut untuk keceptan sudut konstan θ(t)=θo+ωt dan kaitan-kaitan berikut untuk percepatan sudut konstan θ(t)=θ +❑ t+1 αt2 o o 2 ω(t)=ωo+αt 2 2 ω(t) =ωo❑+2αθ 2 5. Momentum sudut Untuk memudahkan penyelidikan dan analisa terhadap gerak rotasi, didefinisikan beberapa besaran sebagai analog konsep gaya dan momentum. Pertama didefinisikan konsep momentum sudut l Momentum sudut suatu partikel yang memiliki momentum linear ⃗p dan berada pada posisi ⃗r dari suatu titik referensi O adalah ⃗ = ⃗r ×⃗p l Perlu diperhatikan bahwa nilai l bergantung pada pemilihan titik referensi O, nilainya dapat berubah bila digunakan titik referensi yang berbeda. 6. Torka Laju perubahan momentum sudut terhadap waktu didefinisikan sebagai besaran torka ⃗τ dl=d (⃗rx⃗p) dt dt dr⃗ ⃗p ⃗r d⃗p = dt x + x dt Karena bentuk dr⃗ x ⃗p = ⃗v x m⃗v = 0 dt ⃗ Maka ⃗τ = ⃗r x ⃗ = dl F dt 7. Sistem partikel (rotasi) Untuk suatu sistem banyak partikel total momentum sudutnya diberikan oleh dengan ⃗ adalah momentum sudut partikel ke-i. Total torka yang bekerja pada sistem ini li 3 8. Torka internal dan eksternal Torka yang bekerja pada sistem dapat dikelompokkan menjadi dua jenis, torka internal yang bekerja pada partikel oleh partikel lain dalam sistem, dan torka eksternal yang berasal dari gaya eksternal. Karena prinsip aksi-reaksi, dan bila garis kerja gaya aksi-reaksi tersebut segaris maka total torka antara dua partikel i dan j 9. Kekekalan momentum sudut Sehingga total torka yang bekerja pada sistem partikel hanyalah torka eksternal, dan perubahan momentum sudut total sistem hanya bergantung pada torka eksternal Ketika tidak ada torka eksternal maka momentum sudut total sistem akan konstan. 10. Energi Kinetik Rotasi Kita tinjau suatu sistem partikel yang berotasi terhadap suatu sumbu tetap. Jarak setiap partikel terhadapa sumbu rotasi selalu tetap. Bila sistem partikel ini adalah benda tegar maka kesemua partikel akan bergerak bersama-sama dengan kecepatan sudut yang sama. Energi kinetik sistem partikel tersebut adalah Besaran yang ada dalam tanda kurung didefinisikan sebagai momen inersia I dari sistem relatif terhadap sumbu rotasi Bila bendanya kontinum, maka perumusan momen inersianya menjadi 4
no reviews yet
Please Login to review.