141x Filetype PDF File size 1.98 MB Source: personal.ee.surrey.ac.uk
Classical Dynamics Jock McOrist Lecture notes Module MAT1036 Classical Dynamics Department of Mathematics University of Surrey Guildford GU2 7XH, United Kingdom c Copyright 2018 by Jock McOrist. All rights reserved. E-mail address: j.mcorist@surrey.ac.uk Abstract Classical dynamics, as laid down by Newton, describes the behaviour of a huge range of everyday phenomena to an incredible degree of precision. It is a monumental achievement of human intellect. In this course we will use Newton’s laws, from first principles, to solve a wide array of classic problems from projectile motion with friction to how the Coriolis force influences flushing toilets. Some helpful hints for doing well in this course. Many of you will have take mechanics at A- level. This course will di↵erent. Instead of rote learning formulae and using a library of examples as in A-levels, you are now going to solve problems from first principles. You will need to use your knowledge of vectors (cf. MAT1031, MAT1005) and Newton’s laws to translate a problem often described in words into a mathematical equation, typically an ordinary di↵erential equation (ODE).YouwillthenbeexpectedtosolvetheODEusingtechniquesthatyoulearntinSemester 1 courses e.g. MAT1030. This will also be a di↵erent course from what you have already taken in semester 1 and are concurrently doing in semester 2. It is a problem solving course, and memorising formulae, nor memorising answers to examples questions, will not help you do well. What will help you do well is working through problems by yourself without the solutions in front of you. Problem solving is a critical skill in your development as a mathematician, not to mention being highly valued by employers, so I encourage you to practice solving problems as much as possible. There will be on average 3 lectures per week, and you will have fortnightly seminars in which you can hone your problem solving skills. There are four unassessed courseworks and one class test. These will be marked and returned to you. The coursework and tests are important feedback for you, telling you how you are doing in the course, what your strengths andweaknessesare, andwhattypeofquestionstoexpectintheexam. Allimportantinformation will be disseminated in the usual channels via SurreyLearn. There is a syllabus on SurreyLearn, and I encourage to look at it. It describes the course content, what you are expected to know, and all of the assessments. The lecture notes are structured to closely follow what we do in class, but it is important to attend lectures. It is where all important information is disseminated pertaining to the course, including any details relating to any course tests, exams and courseworks. There are 47 pages of worked examples throughout the notes as well as exercises at the end of each chapter, with solutions periodically made available throughout the semester. Key concepts are boldfaced when they are introduced. The fortnightly seminars have many questions on the coursework. I recommend working through all the worked examples, four courseworks and chapter exercises as a minimum. If you want to work through more questions and examples, look through the many i wonderful textbooks in the library. Some good example include French and Ebison, Introduction to classical mechanics while the modern classic from Richard Feynman (one of the greatest 20th century physicists) is volume 1 of the Feynman Lectures in Physics. Any questions on the concepts, problems, worked examples or their solutions or if you think you’ve found any error, inaccuracies or other bugs then please see me after lectures, during o ce hours(05AA04,timelistedontheinformationsheet)orpleaseemailmej.mcorist@surrey.ac.uk. ii Contents 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1. What is classical dynamics? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2. Coordinate systems and references frames . . . . . . . . . . . . . . . . . . . . . 1 1.3. Displacement and vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.4. Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.5. Acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.6. Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.7. Problem solving strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.8. Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2. Forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.1. Mass, momentum and forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2. Newton’s Laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2.1. Vector equations and signs . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3. Gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.4. Reference frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.4.1. Translated reference frames . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.4.2. Rotated reference frames . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.5. Normal forces and friction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.6. Air Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.7. Springs and Tension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.8. Damped Simple Harmonic Oscillator . . . . . . . . . . . . . . . . . . . . . . . . 34 2.9. Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3. Dimensional Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.1. Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4. Work and Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.1. Vector Calculus Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.2. Work and Kinetic Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.3. Conservative Forces and Potential Energy . . . . . . . . . . . . . . . . . . . . . 50 4.4. Total Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.5. The electric force and vector fields . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.6. Newton’s gravitational force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4.7. The simple harmonic oscillator revisited . . . . . . . . . . . . . . . . . . . . . . 60 4.8. Whythe universe is a simple harmonic oscillator . . . . . . . . . . . . . . . . . 61 4.9. Dissipative Forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 4.10. Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 4.11. Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 5. Systems of Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 5.1. Conservation of momentum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 5.2. Collisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 5.3. Elastic collisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 5.4. Inelastic collisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 iii
no reviews yet
Please Login to review.