jagomart
digital resources
picture1_Dynamics Pdf 158008 | 10643718056


 210x       Filetype PDF       File size 0.13 MB       Source: termoformat.md


File: Dynamics Pdf 158008 | 10643718056
continue classical dynamics of particles and systems solutions pdf classical dynamics of particles and systems marion solutions classical dynamics of particles and systems 5th edition solutions classical dynamics of particles ...

icon picture PDF Filetype PDF | Posted on 19 Jan 2023 | 2 years ago
Partial capture of text on file.
                                                                                                               	
                                                                                      Continue
                                                            Classical	dynamics	of	particles	and	systems	solutions	pdf
    Classical	dynamics	of	particles	and	systems	marion	solutions.	Classical	dynamics	of	particles	and	systems	5th	edition	solutions.	Classical-dynamics-of-particles-and-systems-marion-thornton	solutions	manual.	Student	solutions	manual	for	thornton/marion	classical	dynamics	of	particles	and	systems	5th.	Classical	dynamics	of	particles	and	systems
                                                                                       solutions	manual	pdf.
  Stock	Image	dialogue	Message	Display	the	Message	AtualizaçÃ	£	10001	9780534408961	[{	"catentry_id":	"489856",	"Attributes":	{}	"ItemImage":	"/wcsstore/CengageStoreFrontAssetStore/images/NoImageIcon.jpg",	"ItemImage467	""	/	wcsstore	/CengageStoreFrontAssetStore/images/NoImageIcon.jpg	""	ItemThumbnailImage	""
  /wcsstore/CengageStoreFrontAssetStore/images/NoImageIcon.jpg	"},	{"	catentry_id	":"	489	852	","	Attributes	":	{}"	ItemImage	"	"/	wcsstore	/	CengageStoreFrontAssetStore	/	images	/	NoImageIcon.jpg",	"ItemImage467":	"/wcsstore/CengageStoreFrontAssetStore/images/NoImageIcon.jpg",	"ItemThumbnailImage":
  "/wcsstore/CengageStoreFrontAssetStore/images/NoImageIcon.jpg"},	{	"catentry_id":	"489	854",	"Attributes":	{}	"ItemImage"	"/wcsstore/CengageStoreFrontAssetStore/images/NoImageIcon.jpg"	"ItemImage467"	"/wcsstore/CengageStoreFrontAssetStore/images/NoImageIcon.jpg"	"ItemThumbnailImage	""
  /wcsstore/CengageStoreFrontAssetStore/images/NoImageIcon.jpg	"},	{"	catentry_id	":"	489	853	","	attributes	"{}"	I	temImage	":"	/wcsstore/CengageStoreFrontAssetStore/images/NoImageIcon.jpg	","	ItemImage467	":"	/wcsstore/CengageStoreFrontAssetStore/images/NoImageIcon.jpg	","	ItemThumbnailImage	":"	/	wcsstore	/
  CengageStoreFrontAssetStore	/	images	/	NoImageIcon.jpg	"}	{	"catentry_id":	"489849",	"Attributes":	{}	"ItemImage":	"/wcsstore/CengageStoreFrontAssetStore/images/NoImageIcon.jpg",	"ItemImage467":	"/	wcsstore	/	CengageStoreFrontAssetStore	/	/NoImageIcon.jpg	images"	"	ItemThumbnailImage	""
  /wcsstore/CengageStoreFrontAssetStore/images/NoImageIcon.jpg	"},	{"	catentry_id	":"	489855	","	Attributes	":	{}"	ItemImage	""	/	wcsstore	/	CengageStoreFrontAssetStore	/	images	/	NoImageIcon.jpg	""	ItemImage467	":"	/wcsstore/CengageStoreFrontAssetStore/images/NoImageIcon.jpg	","	ItemThumbnailImage	":"
  /wcsstore/CengageStoreFrontAssetStore/images/NoImageIcon.jpg	"}]	of	dialogue	Message	display	the	message	AtualizaçÃ	£	10001	9780534408961	[{	"catentry_id":	"489856",	"Attributes":	{}	"ItemImage"	"/	wcsstore	/	CengageStoreFron	ssetStore	tA	/	images	/	NoImageIcon.jpg	""	ItemImage467	""
  /wcsstore/CengageStoreFrontAssetStore/images/NoImageIcon.jpg	""	ItemThumbnailImage	""	/wcsstore/CengageStoreFrontAssetStore/images/NoImageIcon.jpg	"},	{"	catentry_id	":"	489	852	","	Attributes	":	{}"	ItemImage	""	/wcsstore/CengageStoreFrontAssetStore/images/NoImageIcon.jpg	""	ItemImage467	""
  /wcsstore/CengageStoreFrontAssetStore/images/NoImageIcon.jpg	""	ItemThumbnailImage	""	/	wcsstore	/	CengageStoreFrontAssetStore	/	images	/	NoImageIcon.jpg	"},	{"	catentry_id	":"	489854	","	Attributes	":	{}"	ItemImage	":"	/wcsstore/CengageStoreFrontAssetStore/images/NoImageIcon.jpg	","	ItemImage467	":"	/	wcsstore
  /CengageStoreFrontAssetStore/images/NoImageIcon.jpg	""	ItemThumbnailImage	""	/wcsstore/CengageStoreFrontAssetStore/images/NoImageIcon.jpg	"},	{"	catentry_id	":"	489	853	","	Attributes	":	{}"	ItemImage	""	/	wcsstore	/CengageStoreFrontAssetStore/images/NoImageIcon.jpg	","	ItemImage467	":"
  /wcsstore/CengageStoreFrontAssetStore/images/NoImageIcon.jp	g	""	Ite	mThumbnailImage	""	/wcsstore/CengageStoreFrontAssetStore/images/NoImageIcon.jpg	"},	{"	catentry_id	":"	489849	","	Attributes	":	{}"	ItemImage	""	/	wcsstore	/	CengageStoreFrontAssetStore	/	images	/	NoImageIcon	.jpg	""	ItemImage467	""
  /wcsstore/CengageStoreFrontAssetStore/images/NoImageIcon.jpg	""	ItemThumbnailImage	""	/wcsstore/CengageStoreFrontAssetStore/images/NoImageIcon.jpg	"},	{"	catentry_id	":"	489855	","	Attributes	":	{}"	ItemImage	""	/wcsstore/CengageStoreFrontAssetStore/images/NoImageIcon.jpg	","	ItemImage467	":"
  /wcsstore/CengageStoreFrontAssetStore/images/NoImageIcon.jpg	","	ItemThumbnailImage	":"	/	wcsstore	/	CengageStoreFrontAssetStore	/	/NoImageIcon.jpg	images	"}]	0th	chapter	index	v	Prefácio	problems	solved	in	1	Solutions	Student	manual	vii	matrices,	vectors	and	vector	Calculating	Newtonian	MechanicsÃ	¢	1	2	única	partÃcula	29	3	4	79	nA
  oscilaçÃμes	£	linear	chaos	and	oscilaçÃμes	127	5149	6	gravitaçÃ	£	o	Some	mÃ	©	all	of	Calculating	Variations	of	165	7	HamiltonÃ	¢	s	and	Hamiltonian	Dynamics	181	8	Central-Force	of	Motion	233	9	Dining	of	a	Particola	System	277	10	Movement	in	an	uninternial	reference	frame	333	11	Dynamics	of	Rigid	Bodies	353	12	397	13	Coupled
  Oscillations	Container	Systems	;	Waves	435	14	Special	theory	of	Relativity	461	III	IV	Content	Chapter	1	Matrices,	Vectors,	and	Vector	Calculus	1-1.	x2	=	x2a	â²	x1a	²	45e	x1	x3	x3a	²	45e	axes	and	are	on	the	plane.	1XÃ	¢²	3x	a	3x	x	Transform	equations	as	the	following:	1	1	3Cst	45	COS	45x	xx	=	Â	°	AA	Â	°	,²	2	2x	x	=	A	²	3	3	1st	45	Cos	45x	xx	=	Â	°
  Ã	£²	1	1	1	1	2	2	xx	=	â	€	£²	3x	2	2x	x	=	a	²	3	1	1	1	2	2	xx	=	â	€	£²	3x	So,	the	matrix	Transformation	is:	1	1	0	2	2	0	1	0	1	1	0	2	2	yeah	£	â	€	£	£	£	£	£	£	£	£	£	€	€	£	£	£	£	£	£	£	£	£	£	£	£	£	£	£	£	£	£	£	1	1-2	chapter	1-2.	a)	x1	abcd	ct	±	py	oe	x2	x3	from	this	diagram,	we	have	cosoe	oai	Â	±	=	cosoe	obeseâ	²	=	(1)	cosee	odÞ³	=	Taking	the	square	of	each	of
  the	equations	in	(1)	and	Adding,	we	found	2	2	2	2COS	Cos	OA	OB	ODI	Â	±	PY	Registe	£¹	+	+	=	+	+	I	£	£	2	2	2	å	'Â	°	°	°	°	°	(2),	But	2	2	OA	OB	OC	+	=	2	(3)	and	2	2	OC	OB	OE	+	=	2	(4)	So	2	2	2	OA	OD	OE	+	+	=	2	(5)	So	2	2st	2	Cos	Cos	1A	Â	±	Py	+	+	=	(6)	b)	x3	aa	²	x1	x2o	edc	bi	c	²	BÃ	²	and	²	in	first	place,	we	have	the	following	trigonometic
  relationship:	2	2	2	COSEE	OE	OE	OE	Eii	2	â²	q²²	+	a	=	a	²	(7)	matrices,	vectors	and	vector	carton	3	but,	2	2	2	2	2	2	2	cos	cos	cos	cos	cos	cos	and	ee	ob	ob	o	oa	od	od	oe	oe	Oe	oe	oe	oe	ppu	Â	±	yy	registry	â	€	£	â	€	£	â	€	£	â	€	£	â	€	£	â	€	£	â	€	¢	â	€	œa	Â	²	+	A	+	Ai	£	0.	Register	£	£	£	£	£	£	£	£	£	£	£	£	â	€	°	I	Â	°	»I	Â	°	Â	Â	°	I	Â	°	Â	°	»I	Â	Â	°	Â	Â	±	â	€	£²
  =	A	+	â	€	â	€	¢	²	Â	€	£	£	Â	°	Â	°	Â	°	Â	°	I	Â	°	Â	°	Â	°	Â	°	Â	°	Â	Â	±	â	€	°	I	Â	±	â	€	£	â	€	£	2	Â	°	I	Â	Â	°	»I	Â	±	Â	Â	Â	±	Â	±	â	€	ƒâ	€	œThe	£	£	£»	(8)	or,	2	2	22	2	2	2	2	2	2	2	2	Cos	Cos	Cos	Cos	Cos	Cos	Cos	Cos	Cos	Cos	Cos	Cos	2	cos	cos	cos	cos	cos	and	oe	oe	oe	oe	oe	oe	oe	oe	ct	±	py	o	Â	±	pp	±	ct	Â	±	ppyyy	±	ct	ct	±	pp	Ã	Â	²	®	I	Â	±	Â	±	Â	±	â	€	=	+	+	+
  +	+	â	€	£	â	€	¢	²	£²	Â	°	°	°	°	°	Â	°	â	€	£	£	²	â	€	ƒâ	€	ƒâ	€	ƒâ	€	ƒâ	€	œ	£	â	€	£	£	£	£	£	£	£	£	»â	€	ƒâ	€	ƒ	Â	€	ƒâ	€	ƒâ	€	ƒâ	€	ƒâ	€	ƒâ	€	ƒâ	€	ƒâ	€	ƒâ	€	ƒâ	€	ƒâ	€	ƒâ	€	ƒâ	€	ƒâ	€	ƒâ	€	ƒâ	€	ƒâ	€	ƒâ	€	ƒ²	»	±	PPYY	=	+	+	A	²	â	€	™2	(10)	3/1.	X1	x2	x3	E3A	²	E1	E1	E3	A	E2A	²	E1a	²	E1	E1	E3	denote	the	original	axes	by	,,,	and	the	corresponding	unit	vectors	by	and	,,.	They
  denote	the	new	axes	by,	and	the	corresponding	unit	vectors	per	1x	2x	3x	1	2e	3e	3E	1xÃ	²	2xÃ	¢²	²	²	1st,	²,	2a	²,	and.	The	effect	of	rotation	is	and	and,	and.	Therefore,	the	transformation	matrix	is	​​written	as:	3a	â²	1	3	²	1st,	²	and	3	a2a	²	()	()	()	()	()	()	()	()	()	1	1	1	2	1	3	2	1	2	2	2	3	3	1	3	2	3	3	COS,	COS,	COS,	0	1	0	COS,	COS,	0	0	1	1	0	0s,	COS,
  COS,	Regista	Â	â	€	£	1	Â	€	â	€	¢	sa	²	CT	â	€	£	â	€	£	â	€	£	â	€	£	£	£	£	£	£	£	£	0	Â	€	£	â	€	â	€	œQ²	£	1.	Register	£	£	=	=	I	£	1.	Register	£	â	€	£	£	£	£	£	1.	Register	â	€	œa	Â	°	I	Â	Â	Â	Â	Â	Â	Â	Â	Â	Â	°	a)	Be	c	=	AB	in	which	A,	B,	and	C	are	matrices.	Then	ij	ik	k	kj	ca	=	ba	(1)	()	t	ji	jk	ki	ki	jkij	kk	ccabba	=	=	=	AA	6	chapter	1,	so	that	a	cos	1	70.5	3	iai	Â	Â	Â	Â	€
  ¶	=	=	Â	°	I	Â	Â	€	£	£	£	£	£	£	£	£	£	£	Â	°¸	In	the	same	way,	3	2	3	1	3	41	4	2	4	1	3	1	2	4	3	2	4	3	4	1	3	AA	Ã	ã,	=	=	=	=	=	ddddd	dd	ddddddddddddddd	to	Â	±	1-8.	Be	the	angle	between	A	and	R.	Then	2-aa	=	a	r	can	be	written	as	2	°	or,	cosr	ai	=	(1)	this	implies	two	qpo	i	=	(2)	thus,	the	end	point	of	R	has	to	be	in	a	plane	perpendicular	to	a	and	passing	by	P.
  1-9.	2	=	+	AA	IJK	2	3	=	A	+	B	+	IJKA)	3	2Ã	¢	=	¢	¢	AB	IJK	()	()	1	22	2	23	1	(2)	I	Â	Â	€	¢	Ai	Â	Â	°	I	Â	°	»AB	14A	=	AB	B)	The	B	component	along	ABA	IO	Length	of	the	B	component	along	A	is	B	COS	I.	COSAB	IA	=	AB	2	6	1	3	6	COS	or	26	6A	IAA	+	A	=	=	=	ABB	The	direction	is,	of	course,	along	A.	A	vector	unit	in	the	direction	()	1	2	6	+	the	IJK	matrices,
  vectors	and	vector	colon	7	thus,	the	of	ba	a	aorto	of	air	air	()	1	2	+	A	IJKC)	3	3	3	Cos	6	14	2AB	I	A	=	=	=	=	=	=.	1	3	Cos	2	7	I	=	71.	O	I	â	+	ijke	ab)	3	2	26	¢.	¢	¢	¢	¢	¢	¢	¢	¢.	¢+	=	A	+	AB	IJ	(	()	3	1	1	5	0	A	A	+	=	Ã​	Ã​	Ã​	j	i	k	A	B	A	B	2	()	()	10	2	14A	=	A	+	+	+	A	B	A	B	i	j	k	10/1.	2	sin	cosb	tb	tÃ​	I	=	+	Rija)	2	2	2	cos	sen	2	sin	cos	btbtbtbt	I	I	I	I	I	I	I	2I	I	=	=	A
  =	=	Ã​	Ã​	=	Ã​	vrijavijr	1	22	2	2	2	2	2	1	22	2	4	velocidade	cos	sin	sin	cos	4	btbbtt	I	I	I	I	I	I	i	ti	£	®	I	£	¹	=	=	+	i	£	°	I	£	»i	£	®	I	£	¹	=	+	I	£	£	°	I»	v	1	22speed	3	cos	1b	Ti	i	I	£	®	I	£	¹	=	+	I	£	£	°	I	»b)	para	a	2t	I	I	=,	sin	1Ti	=,	cos	0tÃ​	=	Assim,	neste	momento,	Bi	=	VJ,	22bÃ​	=	â	ai	Assim,	90i	°	8	CapÃ​tulo	1	1-11.	a)	Uma
  vez	que	()	IJK	J	ki	jk	Um	BÃ​μÃ​	=	A	AB,	temos	()	()	()	(),	1	2	3	3	2	2	1	3	3	1	3	1	2	2	1	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	()	IJK	jkiijk	ABCCABABCABABCABABCCC	AAAAAAAAACCCBBBBBBBBB	CCC	Ã​μÃ​	â	=	=	Ã​	Ã​	A	+	A	=	=	A	=	=	Ã​	Ã​	Ã​	ABCAB	Ca	(1)	podemos	também	gravação	(1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	()
  CCCBBBBBBCCCAAAAAA	A	A	=	A	=	=	a	a	ABCBCA)	(2)	Notamos	deste	resultado	que	um	mesmo	número	de	permutações	folhas	o	determinante	inalterado.	b)	Considere	vectores	A	e	B	no	plano	definido	por	e,.	Uma	vez	que	a	figura	definido	por	A,	B,	C	é	um	paralelepÃ​pedo,	a	área	da	base,	mas	um	2e	3	3Ã​	=	A	A	B	e	A	=	E	C	Altura	do
  paralelepÃ​pedo.	Então,	()	()	3	área	da	base	=	altitude	área	da	base	a	=	volume	do	paralelepÃ​pedo	A	A	=	A	A	A	C	A	B	C	E	12/1.	O	A	B	C	ha	B	C	A	A	C	C	A	b	b	a	a	h	A	distância	a	partir	da	origem	O	para	o	plano	definido	por	A,	B,	C	é	MATRIZES,	vectores	e	do	cálculo	de	vetor	novembro	01-16.	x3	P	r	i	x2	x1	Ar	I	ar	Porque	eu	Constanta	=	ra	cos
  constantra	i	=	Ã​	dado	que	uma	é	constante,	por	isso	sabemos	que	cos	constantr	i	=	mas	eu	COSR	é	a	magnitude	do	componente	de	R	ao	longo	de	uma.	O	conjunto	de	vectores	que	satisfazem	todos	têm	o	mesmo	ao	longo	de	um	componente;	no	entanto,	o	componente	perpendicular	a	um	é	arbitrária.	CONSTANÅ¢A	=	r	uma	Th	é-nos	Ã	
  superfÃ​cie	representada	pela	constante	de	um	plano	perpendicular	ao.	Ã​	=	r	a	um	17/01.	um	A	i	b	B	c	C	Considere	o	triângulo	a,	b,	c,	que	é	formado	pelos	vectores	A,	B,	C.	Desde	()	(2	2	22)	AB	=	A	=	A	Ã​	Ã​	=	a	a	+	CABCABABAB	(1)	ou,	2	2	2	2	B	AB	cosa	i	=	+	a	C	(2),	que	é	a	lei	co-seno	de	trigonometria	plana.	1-18.	Considere	o	triângulo	a,	b,
  c,	que	é	formado	pelos	vectores	A,	B,	C.	A	i	±	CB	y	p	bc	um	CapÃ​tulo	12	1	=	A	CAB	(1),	de	modo	que	()	A	=	A	A	CBABB	(2),	mas	o	lado	esquerdo	e	o	lado	direito	de	(2)	são	escritos	como:	3sinBC	ct	±	a	=	CB-e	(3)	e	()	3sinAB	Ã​³â	a	=	a	a	a	=	a	=	ABBABBBAB	e	(4)	em	que	e	é	o	vector	de	unidade	perpendicular	ao	triângulo	ABC.	Portanto,	3
  pecado	sinBC	ABI	±	y	=	(5)	ou,	sin	sin	C	Um	y	±	ct	=	Do	mesmo	modo,	sin	sin	sin	C	A	B	y	oc	±	p	=	=	(6),	que	é	a	lei	sinusoidal	de	trigonometria	plana.	1-19.	x2	A	i	±	x1	a2	b2	a1	b1	b	p	a)	Começamos	notando	que	()	2	2	2	2	cosa	b	ab	a-	±	pA	=	+	A	AB	(1)	também	pode	escrever	que	(	)	()	()	()	()	()	()	()	2	22	1	1	2	2	2	2	2	2	2	2	2	2	2	2	cos	cos
  sin	sin	sin	cos	sin	cos	2	cos	cos	sin	sin	2	cos	cos	sin	sin	ababababab	ab	ab	ab	ct	ct	±	p	±	p	±	ct	ct	±	p	p	p	±	ct	ct	ct	±	±	±	u	p	p	a	=	a	+	a	=	a	+	a	=	+	+	+	A	+	=	+	A	+	ab	p	(2)	MATRICES,	vectores	e	do	cálculo	de	vetor	13	Assim,	comparando	(1)	e	(2),	conclui-se	que	()	cos	cos	cos	sin	sini	±	p	±	p	ct	ct	±	Ã​	=	+	p	(3)	b)	Utilizando	(3),
  podemos	encontrar	()	sin	±	ct	pA:	()	()	()	()	()	2	2	2	2	2	2	2	2	2	2	2	2	2	2	sin	1	cos	1	cos	cos	sin	sin	2cos	sin	cos	pecado	1	cos	1	sin	sin	1	cos	2cos	sin	cos	cos	sin	sin	2sin	sin	cos	cos	cos	sin	sin	cos	cos	pecado	ct	±	p	ct	±	p	ct	±	p	ct	±	p	ct	±	u	±	p	p	p	±	ct	ct	ct	p	±	±	±	ct	ct	p	±	p	±	p	ct	ct	ct	±	p	±	p	±	p	ct	ct	±	p	a	=	a	a	=	a	â	a	=
  a	a	a	a	a	=	a	+	=	a	p	(4),	de	modo	que	()	sin	sin	cos	cos	sini	±	p	±	p	ct	ct	±	â	=	j	uma	p	(5)	1-20.	a)	Considerar	os	dois	casos	seguintes:	Quando	I	A	=	0ijÃ​'	mas	0ijkÃ​μ	â.	Quando	i	=	j	0ijÃ​'	â	mas	0ijkÃ​μ	=.	Portanto,	0ijk	ij	ij	£	ô	=	a	(1)	b)	Nós	proceder	da	seguinte	maneira:	quando	j	=	k,	0ijk	ijjÃ​μ	£	=	=	Termos	como	11	and	11	0jÃ	μ	=.
  Em	seguida,	12	12	13	13	21	21	31	31	32	32	23	23ijk	JK	iiiiii	JK	Â	£	Â	£	Â	£	Â	£	Â	£	Â	£	Â	£	Â	£	Â	£	Â	£	Â	£	Â	£	Â	£	Â	£	=	+	+	+	+	+	A	=	Agora,	she	suponha,	entÃ	£	o,	1	=	=	123	123	132	132	1	1	2	JK	Â	£	Â	£	Â	£	Â	£	=	+	=	+	A	16	CapÃtulo	1	()	primeiro	IJK	J	ki	JK	B	Repair	μÃ	A	=	BC.	EntÃ	£	o,	()	[]	()	()	()	()	MNM	MNM	NJK	j	KN	MN	MN	JK	MM	NJK
  mjk	MN	jkn	mjk	jkmn	jkmn	LMN	jkn	mjk	JKM	n	JL	km	k	JM	mjk	JKM	mmmmmmmmmmmm	ABCABCABCABCABCABCABC	ABCBACCABBC	Â	£	Â	£	Â	£	Â	£	Â	£	Â	£	Â	£	Â	£	Â	£	vaccines	vaccines	vaccines	vaccines	c	=	a	=	=	=	n	Â	£	Â	«Â	£	i	=	n	¶	¬	Â	£	Â	£	Â	Registe	·	I	Â	£	Â	£	Registe	a	=	a	i	Â	£	Â	«Â	£	she	¶	a	£	«	a	=	a	=	a	£	¬	a	£	Â	·	a	£	¬Ã	¯
  Â	£	Â	£	s	a	a	£	=	a	a	a	a	aaaa	Ã	¢	Ã	¢	Ã	¢	ABCACAB	Registe	Â	£	¶	Registe	Â	£	Â	Â	·	I	a	£	Assim,	()	()	()	=	the	time	to	study	¢	Ã	¢	ABCACBABC	(2)	1-23.	Write	()	JM	MJ	my	Um	ba	μÃ	AB	=	A	()	KRS	sk	rs	r	=	C	two	μÃ	um	CD	from	£	EntÃ,	matrizes,	vectores	to	cálculo	of	vetor	17	()	()	[]	(	)	()	IJK	JMM	KRS	r	Si	JK	my	rs	IJK	JM	KRS	SRA	JK	SRA	JM	IJK
  RSK	mrsj	SRA	kjm	IR	JS	Ã	©	jr	mrsj	SRA	jmmijmijjmjmjmijmjmj	ABCDABCDABCDABCDABCDA	BDCDABC	Â	£	Â	£	Â	£	Â	£	Â	£	Â	£	Â	£	Â	£	Â	£	Â	£	vaccines	vaccines	vaccines	vaccines	Â	£	Â	£	Â	£	Â	£	Â	Registe	«she	Â	£	¶	a	£	«	Â	£	¶	she	AAA	=	a	£	¬	a	£	Â	·	a	£	¬	a	£	Â	·	a	£	a	£	£	a	a	a	a	a	=	£	a	£	Â	«Â	£	i	=	a	¶	£	¬	a	£	Â	·	a	£	a	£	a	=	a	=	a	a	£	Â
  «Â	£	i	=	a	¶	she	¬	Â	£	Â	£	s	·	a	£	£	a	a	a	a	a	AA	ABCD	()	()	jmimii	CABDCD	Registe	Â	£	Â	«Â	she	¶	Registe	£	Â	£	Â	£	¬	Registe	I	Â	·	Â	£	Â	Registe	a	=	£	Ã	¢	Ã	¢	Abd	Portanto	ABC,	[()	()]	()	()	=	AAA	ABCD	ABC	Abd	C	D	1-24.	Expandindo	from	Produto	triplo	vector,	temos	()	()	()	=	the	time	to	study	¢	Ã	¢	A	A	A	A	EEE	(1)	If,	()	A	=	A	him	(2)	Assim,	()	()
  =	a	+	um	aaae	him	of	the	EU	(3)	(a	study	it)	Ã	©	the	componente	of	the	direcçÃ	£	o	of	it,	he	Tempo	ao	mesmo	(aae)	Ã	©	o	componente	of	Uma	perpendicular	to	it.	CapÃtulo	18	de	Janeiro	1-25.	r	Ei	Ei	ii	Os	vectores	unitários	em	coordenadas	esfÃ	©	ricas	in	£	from	expressos	em	termos	of	coordenadas	rectangulares	por	()	()	()	cos	cos,	cos	there,	so
  that,	cos,	0	cos	there,	so	that	she	COSR	iiiiiiiiiiiiii	Â	£	¹	a	=	i	º	Â	£	Â	£	Ã	Â	°	a	=	i	º	Â	£	Â	£	Ã	Â	Ã	º	º	£	=	a	£	Â	»EEE	(1)	Assim,	()	cos	cos	there	then,	cos	cos	that	there	Cosi	IIIIIIIIIIII	ii	=	aaaae	COSR	iiii	+	a	=	a	(2)	is	forma	semelhante,	()	cos,	that	0i	iiii	=	to	a	cos	pecado	Rii	ii	IA	is	=	(3)	is	SINR	i	ii	II	=	+	EEE	(4)	Agora,	vamos	qualquer	vector
  posiçÃ	from	£	Ã	©	x.	Em	seguida,	eventually	=	xe	(5)	()	so	that	rrrrrrrrrr	IIIIIIIIII	=	+	=	+	+	=	+	+	xeeeeeeeer	(6)	()	()	()	()	()	2	2	2	2	cos	so	that	there	are	2	2	cos	cos	2	so	that	there	rrrrrrrrrrrrrrrrrrrr	iiiiiiii	II	iiiiiiiiii	II	iiiiiiiiiii	=	+	+	+	+	+	+	+	+	=	+	+	+	+	a	+	a	re	xeeeeee	him	(7)	OU,	matrizes,	vectores	to	cálculo	of	vetor	21	1-28.	()	()	Full	full	ii	ix
  ha	of	um	graduado	rre	(1)	onde	2i	ix	=	AR	(2)	Assim,	()	2	2	1	full	iiiiixxxx	A	=	A	=	Uma	RRR	(3),	of	Modo	que	()	2	1	full	IIIx	Registe	Â	£	Â	«Â	£	i	=	n	¶	•	Â	£	Â	£	Â	£	Registe	r	er	um	formando	Quero	Â	£	Â	·	(4)	OU,	()	2ln	r	=	r	r	graduado	(5	)	1-29.	Let	descrever	to	superfÃcie	is	9r	2	=	1	+	2	+	1	=	XYZ	descrever	to	superfÃcie	S.	O	Ã	¢	ngulo	entre	ie
  ponto	or	(2,	2,1)	from	Ã	©	Ã	¢	ngulo	entre	estas	the	most	perpendiculares	superfÃcies,	or	ponto.	From	normal	Ã	©	of	2	1s	2s	1s	()	()	()	()	2	2	2	1	1	2	3	2	2	1	1	2	3	9	9	2	2	2	4	4	2	XYZ	is	rxyzxyz	=	=	=	=	A	=	+	+	+	+	=	=	a	+	graduado	graduado	graduado	eeeeee	2-a	(1),	the	normal	time	©:	(2s)	()	()	2	2	1	2	3	2	2	1	2	3	1	2	2	x	1a	z	E	xyzz	=	=	a	=	=	+	+	a
  +	=	+	=	+	+	graduado	graduado	eeeeee	(2)	Assim,	CapÃtulo	22	1	()	()	()	()	()	()	1	2	1	2	1	2	3	1	2	3	cos	4	4	2	2	6	6	SSSS	is	a	=	a	+	a	+	+	=	graduado	graduado	graduado	graduado	eeeeee	(3)	OU,	4	cos	i	=	6	6	(4)	of	the	qual	partir	um	74,2	9	6	cos	i	=	a	=	Â	°	(5)	1-30.	()	()	3	1	iii	ii	ii	iiii	ixxxx	iiiiii	ix	IIIIIII	Â	£	=	®	I	Â	£	Ã	¢	Ã	¢	¢	¹Ã	=	=	i	+	Â	£	Â	£
  Registe	to	¢	Ã	¢	AI	ºÃ	Â	£	Â	£	Â	°	I	Â	»=	c	+	aaaa	eeee	out	graduado	Assim,	()	=	+	IIIIII	graduado	grad	1-31.	a)	()	1	2	3	2	1	1	2	2	1	2	2	2	2	2	nnniiji	ji	=	iniijijniijijniiirrxx	xnxxxnxxnr	Ã	Â	£	®	I	I	≤	¹ï	£	£	Â	Â	"Â	£	i	£	Â	Â	¶AAI	Sign	¯	Â	£	Â	°	I	=	Â	£	¬	Sign	Â	£	Ã	¢	Â	·	A	i	Â	£	Â	£	Â	Sign	ºï	Â	£	Â	£	Register	i	Â	£	Â	£	Â	Â	°	i	»i	Â	£	Â	'i	Â	£	Â	£	n	=	¶
  ¬	Register	·	Â	£	i	£	Â	Register	Register	£	£	Â	Â	"Â	£	¶	i	=	n	£	Â	Â	£	¬	Register	£	Â	Â	·	I	Register	£	Ã	=	aaaaaa	graduated	eeeee	(1)	therefore,	(2)	=	NNR	NR	degree	R	(2)	MATRICES,	vectors	and	vector	Calculating	23	b)	()	()	()	()	()	3	3	1	1	1	2	2	1	2	2	ii	iii	IIJI	ji	iijijiiifrfrrfrxrfrxx	rfrxxr	fx	r	dr	=	A	A	x	A	=	¢	Ã	£	Â	Â	Â	Â	'i	Â	Ã	£	¶	A	=	Â	£	Â	£	¬	·	A	A
  A	A	A	A	A	A	£	£	£	Â	Â	Â	Â	«i	¢	Ã	Â	£	¶	=	Â	Â	Ã	£	¬	¯	Â	£	Â	£	Â	·	A	i	A	A	A	A	£	¢	=	AAA	A	A	A	graduated	eeeee	(3)	Therefore,	()	()	f	RF	=	rrr	grad	R	(4)	c)	(	)	()	()	()	()	1	2	2	2	2	2	2	2	1	2	2	1	2	2	1	2	2	1	2	2	22	2	2	ln	LN	1	2	2	2	1	2	3	ji	ji	ji	iijjiijjiji	iiijjiji	ji	jirrxxxxxxxxxxxxxxxxx	rr	aa	£	Â	®	AI	I	£	Â	£	Â	Â	¹ï	'i	Â	£	Â	£	Reg	¶AAI	iste	Â	£	Â	°	I	=	Â	£	¬	Sign
  Â	£	Ã	¢	Â	·	AI	Â	£	Â	£	Â	Sign	ºï	Â	£	Â	£	Register	i	Â	£	Â	°	Â	Â	£	Â	»Sign	Â	£	®	I	Â	£	Â	£	Â	¹ï	'i	Â	£	¶	Sign	Â	£	Â	£	Â	Sign	ºÃ	¢	Sign	Â	£	¬	Sign	Â	£	Â	£	Â	Â	·	I	Sign	Â	£	Â	£	ºï	Sign	Â	£	A	Ui	=	Â	£	Â	£	Â	°	Register	Â	£	Ia	'¶ï	to	£	Â	£	£	º	A	A	A	A	A	A	A	A	£	£	£	¬	Ã	Â	ºï	¯	Â	£	Â	£	Â	·	Â	Â	Â	Â	£	i	£	Â	Â	Â	£	Â	£	Â	°	ºï	to	£	Â	»Â	£	Â	£	Â	®	The
  ¹ï	Â	£	«	Â	£	i	£	Â	¶A	Register	Register	Â	£	Â	£	n	°	=	¬	Register	·	A	i	£	Â	£	Â	Â	Â	Register	ºï	£	£	£	i	Register	£	Â	Â	Â	°	i	£	Â	»i	Â	£	Â"	Â	£	i	£	¶	Register	to	'Â	£	i	=	a	i	+	¶A	¢	Â	£	Â	£	¬	Register	·	Â	£	i	£	Â	¬	Register	·	A	i	Â	Â	£	£	£	Register	Register	Register	Register	£	£	Â	®	Â	=	a	+	i	£	i	£	Â	Â	°	a	¢	Ã	¢	¢	AAA	aaaaaaaa	2	4	2	2	2	3	Register	£
  rrr	1r	¹	ºï	to	£	Â	£	Â	'=	a	+	=	(5)	or	()	2	=	2	1	ln	rr	to	(6),	26	1	1-36	chapter.	X	d	Z	y	c2	=	x2	+	y2	The	integrally	suggests	the	use	of	the	divergência	theorem.	(1)	V	S	=	a	¢	Â	¢	Ã	¢	"Ã	¢	'A	A	A	A	From	the	dv,	only	need	to	evaluate	the	total	volume.	Our	cylinder	has	a	radius	c	and	time	d	and	so	the	response	to	1	=	©	(2)	V	2	=	dv	c	Di	Ã	¢	'1-37.	X	Y	Z
  R	to	make	the	member	directly,	note	that	A,	on	the	surface,	and.	RR	=	3	and	e	=	RD	5	3	3	24	4	d	R	RR	SS	IR	=	IA	=	A	=	Â	"Ã	¢	'The	one	(1)	To	use	divergência	theorem,	we	need	to	calculate	AA	A.	This	Ã	©	best	done	in	EFSA	coordinates	©	rich,	which	one.	Using	Apêndice	F,	we	see	that	3	rr	=	E	()	221	5rrr	r	2	r	Ã	¢	AA	=	AA	(2)	Therefore,	()	2	2	2	0
  0	0	5	4	sin	RV	DV	DDRR	Dr	R	ii	5i	iiiaa	=	Ã	¢	Â	"Ã	¢	Â"	Â	A_	«Ã	¢	'(3)	Alternatively,	one	can	simply	set	this	case	dv.	DRI	=	24	r	MATRIX,	vectors	and	vector	27	Calculating	1-38.	xzy	C	x2	+	y2	=	1	z	=	1	¢	Ã	¢	x2	y2	At	StokeÃ	theorem	¢	s	we	()	R	d	C	to	A	a	=	Ã	¢	Â	"Ã	¢	Â	'A	A	s	(1)	the	curve	C,	which	includes	the	Surface	©	s	to	the	cÃrculo	unitário
  which	is	in	the	xy	plane.	Since	área	element	in	Surface	Ã	©	chosen	to	be	outside	of	the	origin,	the	curve	©	anti-directed	schedule,	as	required	by	the	rule	of	poor	£	right.	Now	switch	to	polar	coordinates,	so	that	we	have	d	=	D	II	and	are	sewed	and	sin	I	=	A	i	+	k	on	the	curve.	Since	IA	sini	=	EI	=	¢	Ã	0i	and	k,	we	have	()	sin	2	2	0	C	d	I	I	i	di	=	A	=	A	a
  A	'a	¢	Â'	S	(2)	1-39.	a)	Leta	s	denote	A	=	(1,0,0);	B	=	(0,2,0);	C	=	(0,0,3).	Then,	(1,	2,0)	=	AB;	(1,0,	3)	=	CA;	and	(6	3.2)	The	AC	=	AB.	Any	vector	perpendicular	to	the	plane	(ABC)	should	be	parallel	to	an	AB	AC,	so	that	the	unit	vector	perpendicular	to	the	plane	(ABC)	A	©	(6	7	3	7	2	7)	=	nb)	Leta	s	is	D	=	(	1,	1,1)	and	M	=	(x,	y,	z)	is	the	point	on	the
  plane	(ABC)	nearest	H.	then	(1,	1,	1	x	yz	=	a	a	DH)	a	©	n	parallel	data	in	a);	Hereby	1	6	2	1	3	¢	A	and	xy	=	1	6	3	1	2	¢	Ã	Another	xz	=	(A	=	1	,,	XY)	perpendicular	to	ZAH	Ã	©	n	6	thus	has	(1)	3	2	xy	0	=	Za	+.	Solving	these	equaçÃμes	3	is	H	(,,)	(49.34	19	49,	39	49)	X	=	Y	=	Z	5:07	DH	=	1-40.	a)	On	top	of	the	hill,	z	©	máximo;	0	2	and	6	x	z	y	x	=	a	¢	Ã
  ¢	0	18	2	8	x	y	y	z	A	=	28	A	+	1	A	28	well	chapter	x	=	2;	y	=	3,	and	s	hilla	©	height	of	one	máximo	[Z]	=	72	m.	In	fact,	this	Ã	©	máximo	the	value	of	z,	because	given	the	equaçÃ	£	z	implies	that	for	each	given	value	of	X	(or	Y)	z	discloses	an	upside	down	parábola	term	in	y	(or	x)	Variable.	B)	Point	A:	x	=	Y	=	1,	Z	=	13.	At	this	point,	two	of	the	tangent
  vectors	at	the	superfine	of	the	hill	are	will	be	(1,0)	(1.0,	8)	ZX	A	=	a	t	=	and	2	(1,1)	(0.1),	(0.1,	22)	ZY	=	¢	=	TT	is	evidently	perpendicular	to	the	hill	surface,	and	the	angle	of	a	2	(8,	22.1)	of	the	axis	a	=	AI	between	this	and	oz	is	2	2	2	(0.0,1)	(8	,	22.1)	1	23,438	s	22	1	a	+	+	co	I	=	So	I	=	87.55	degrees.	=	C)	Suppose	that	in	the	I	meaning	Â	±	(in	relation
  to	the	W-e	axis),	at	point	A	=	(1,1,13)	the	hill	is	more	ogreme.	Of	course,	DY	=	(tan?	Â	±)	DX	ED	2	2	6	8	18	28	22	22	(TAN	1)	Z	XDY	YDX	XDX	Ydy	DX	DY	DXI	Â	±	=	+	AAA	+	=	A,	then	2	2	COS	1	22	(tan	1)	22	2	COS	(45)	DX	DX	DY	DZ	DX	CT	CT	Â	Â	±	U	+	A	=	A	+	P	=	TAN	=	The	hill	is	more	accentuated	when	tanÞâ²	is	minimal,	and	when	this
  happens	to	=	45	degrees	with	respect	to	the	WE	axis.	(Note	that	I	Â	±	135	does	not	give	a	physical	response).	1-41.	2	(1)	AA	=	a	a	b,	then	if	only	one	or	=	a	=	0.	0	=	a	b	newtonian	mechanicsÃ	¢	single	partisicle	31	2-3.	Y	x	v0	p	P	CT	Â	±	The	equation	of	the	movement	is	M	=	F	A	(1)	The	gravitational	force	is	the	only	applied	force;	therefore,	0x	y	f	mx	f
  my	mg	=	=	i	â	€	ƒâ	€	œ	â	€	œ	Â	°	=	=	A	I	Â	±	(2)	integration	of	these	equations	and	using	the	Condi	Initial,	()	()	()	0	0	0	0	COS	sin	xtvytv	â	€	Â	±	Â	±	q	£	£	£	£	£	=	=	I	Â	€	»(3)	We	found	()	()	()	0	0	Cos	Sin	Xtvytv	gt	Â	Â	±	Â	±	Â	€	£	£	£	£	â	€	ƒâ	€	ƒâ	€	ƒâ	€	œA	£	for	x	and	y	()	()	()	()	0	2	0	1	COS	SEN	2	XTVTYTVT	GT	CT	CT	±	Â	Â	±	Â	°	ž	Â	°	°	Â	€	»(5)
  Suppose	it	takes	a	time	t	to	reach	Point	P.	So,	0	0	0	0	0	0	0	0	1	Cos	Cos	Sin	Sin	P	2	VTVT	GT	CT	CT	±	Â	±	=	n	£	¹	º	Regista	Â	°	=	A	Â	°	º	º	Â	°	ž	Â	€	"(6),	the	elimination	between	these	equations,	0	00	0	2	21	Sin	Cos	tan	0	2	VVTGG	CT	CT	Â	Â	Â	Â	Â	±	Â	Â	°	Â	Â	°	GT	A	+	I	Â	±	Â	±	¯	Â	±	Regista	Â	¸	=	n	£	·	(7)	from	which	32	chapter	2	()	00	2	Sin
  COS	tan	VTG	CT	CT	Â	Â	Â	±	P	=	A	(8)	4/2.	One	of	the	height	BallsÃ	¢	can	be	described	by	20	0	2Y	y	v	t	gt	=	+	a.	The	amount	of	time	it	takes	to	rise	and	descend	to	its	initial	height	is,	therefore,	given	by	02V	g.	If	the	time	leading	to	the	ball	cycle	through	JugglerÃ	¢	s's	hands	is	0.9	si	=,	so	it	should	be	3	balls	in	the	air	for	the	time	I.	A	single	ball	has	to
  remain	in	the	air	for	at	least	3a,	so	that	the	condition	is	02	3v	g	i	to	¥,	or.	10	13.2	m	SV	¢	â	€	™	2-5.	Point	Mg	of	N	Max	FlightPath	Acceleration	Plan	A)	From	the	force	diagram	that	has	()	2	RM	MV	r	=	n	g	and	m.	The	acceleration	that	the	pilot	feels	()	2	rm	mv	r	=	+	n	g	and,	which	has	a	maximum	amplitude	at	the	bottom	of	the	maneuver.	b)	If	the
  acceleration	felt	by	the	pilot	should	be	less	than	9	g,	then	we	have	()	12	2	3	330	ms	12.5	km	8	9	9.8	msv	r	gaaaa	Ã	¢	â	€	=	(1)	a	smaller	circle	than	this	will	result	in	pilot	darkening.	2-6.	Let	the	origin	of	our	coordinate	system	be	at	the	end	of	the	cattle	tail	(or	the	closest	of	cow	/	bull).	a)	The	bales	are	initially	moving	at	the	velocity	of	the	plane	when	it
  fell.	Describe	one	of	these	bales	by	the	parametric	equations	0	x	x	v	=	T	+	(1)	Newtoniano	MechanicsÃ	¢	single	Particle	33	20	1	2	y	y	gt	=	a	(2)	where,	and	we	have	to	solve.	(2),	the	time	the	burden	reaches	the	soil	is	0	80	mine	=	0	x	02Y	GI	=.	If	we	want	the	burden	to	land	in	()	30	mx	i	=	a,	then	()	0	x	x	v0ã	i	=	a.	Replacing	and	other	values,	which
  gives	44.4	-1S0	MV	=	to	0	210x	mA.	The	farmer	should	drop	the	bales	of	210	m	for	back	the	cattle.	b)	She	could	drop	the	burden	before	for	any	amount	of	time	and	did	not	hit	the	cattle.	If	she	was	late	for	the	amount	of	time	it	takes	the	burden	(or	plan)	to	travel	by	30	m	in	direction	X,	then	she	will	attack	the	cattle.	This	time	is	given	by	()	030	m	0.68
  SV.	2-7.	Air	resistance	is	always	anti-parallel	speed.	The	expression	vector	is:	2	1	1	2W	C	AV	C	AV	VII	Â	±	â	€	£	â	€	=	â	€	=	Â	±	â	€	°	°	°	°	°	I	»V	W	WI	VA	(1)	Including	gravity	and	configuration,	they	obtison	the	parametic	equations	Mquidae	M	=	F	2x	BX	XY	=	A	+	2	(2)	2	2Y	by	XYG	=	A	+	(3)	where	2W	to	MB	CI	=.	Solving	with	a	computer	using	the
  data	and,	we	discovered	that	if	the	farmer	fall	the	burden	210	m	behind	the	cattle	(the	response	of	the	previous	problem)	then	takes	4.44	s	Ã	earth	62,5	62.5	trás	cattle.	This	means	that	the	burden	should	be	discarded	in	178	m	atrás	cattle	Ã	land	30	m	to	trás.	This	soluçÃ	£	â	©	©	what	plotted	in	FIG.	The	error	since	it	Ã	©	Ã	©	allowed	to	do	the
  same	as	in	the	previous	problem	that	already-Only	depends	on	the	Wed	£	Fast	Avia	£	está	the	moving.	-31.3	kg	¢	Ã	¢	MI	=	200	A	180	A	160	A	140	A	120	A	100	A	80	A	60	A	40	0	​​A	20	40	60	80	Resistance	With	Without	air	the	air	Resistance	x	(	m)	Y	(m)	36	chapter	2	()	1	2	3	21	1ln	3z	+	zz	z	=	a	+	(9)	©	válido	(8)	can	be	approximately	expressed	as	2	0
  0	2011	3	kV	v	2m	Register	KR	tggg	®	I	£	£	Â	£	Â	®	¹ï	I	¹	£	Â	£	Â	Â	Ã	£	Â	Â	Sign	°	Ai	=	A	+	£	Â	£	Register	º	to	£	The	Sign	ºï	Â	£	Â	£	Â	£	Â	Â	°	I	»i	Â	£	Â	£	Â	Â	°	A»	¢	|	(10)	Gives	the	correct	result,	as	in	(4)	to	limit	the	k	0.	2-10.	The	equaçÃ	£	differential	are	invited	to	solve	the	Ã	©	EquaçÃ	the	£	(2.22),	which	Ã	©.	Using	the	above	values,
  frames	sÃ	£	shown	in	the	figure.	Of	course,	the	reader	in	the	será	£	able	to	distinguish	between	the	results	presented	here	and	analÃticos	results.	The	reader	will	have	to	take	the	word	of	the	author	that	the	graphs	were	obtained	using	a	mÃ	©	all	©	rich	in	a	computer.	The	results	were	within	the	10	máximo	x	k	=	A	x	£	soluçÃ	8a	of	the	analÃtica.	0
  5	10	15	20	25	30	5	10	v	vs	TT	(s)	v	(m	/	s)	0	20	40	60	80	0	5	10	100	V	vs	xx	(m)	v	(m	/	s)	0	5	10	15	20	25	30	0	vs	TT	50	100	x	(s)	x	(m)	2-11.	The	equaçÃ	the	motion	£	©	2	2	2	DXM	KMV	mg	dt	=	A	+	(1)	This	equaçÃ	the	£	can	be	solved	exactly	the	same	way	as	in	2-12	problem	and	found	NEWTONIAN	MECHANICSÃ	¢	única	partÃcula	37	2	0	1	2	log	2
  g	Register	KR	KR	xkg	I	£	®	Â	£	¢	¹Ã	n	=	Â	£	Â	¢	Register	Register	ºÃ	£	£	£	Â	Â	Â	°	I	'(2)	where	the	origin	©	taken	as	the	point	at	which	v	=	0	v	so	that	the	initial	condiçÃ	£	â	©	()	vv	=	0x	=	0.	Thus,	Dista	¢	0v	INSTANCE	point	to	the	point	v	=	v	1	v	=	©	()	1	0	0	2	1	2	1	2	g	of	KR	KR	svvkg	log	Register	I	£	®	Â	£	¢	A	=	¹Ã	IU	£	Â	¢	Register	Register
  ºÃ	£	£	£	Â	Â	Â	°	I	'(3)	2-12.	The	£	equaçÃ	the	movement	to	the	upward	movement	©	2	2	2	dt	=	DXM	MKV	mg	to	A	(1)	Using	the	Interface	£	2	2	dv	dv	dv	dx	dx	dt	v	dt	=	dx	dt	=	dx	(2)	you	can	rewrite	(1)	as	dv	dx	2	v	kv	g	=	a	+	(3)	the	IntegraçÃ	£	(3),	we	find	()	log	2	21	kv	GX	+	C	k	=	a	+	(4)	where	the	constant	C	can	be	calculated	using	the	initial	£
  condiçÃ	that	when	x	=	0:	v	=	0v	()	201	g	log2C	KVK	=	+	(5)	therefore	1	2	0	2	2	log	KR	KR	gxk	=	g	+	+	(6)	Now,	the	low	equaçÃ	£	©	movement	DXM	2	2	2	MKV	mg	dt	=	a	+	(7)	This	can	be	written	as	dv	dx	2	v	kv	g	=	a	+	(8)	Integrating	(8)	and	using	the	initial	condiçÃ	£	x	=	0	at	v	=	0	(w	taking	the	highest	point	as	the	source	for	downward
  movement)	TITLE	found	Case	38	2	2	1	2	gxkg	KR	=	log	to	(9)	at	the	highest	point	the	speed	of	partÃcula	should	be	zero.	Therefore,	the	point	higher	by	substituting	v	=	0	(6):	2	01	log	2h	kv	gxkg	+	=	(10)	Then,	substituting	(10)	into	(9)	2	0	2	1	1	log	log	2	2	kv	ggkgkgk	=	a	+	v	(11)	Solving	for	v	2	0	2	0	kV	=	gv	+	GVK	(12)	we	can	find	the	terminal
  velocity	by	putting	x	on	(9).	This	Gives	T	g	=	v	k	(13)	Therefore,	0	2	2	0	t	t	v	v	v	v	v	=	+	(14)	2-13.	The	equaçÃ	£	partÃcula	of	the	motion	©	()	3	2dvm	mk	va	dt	=	A	+	v	(1)	IntegraçÃ	£	the	()	2	2	k	dv	dt	=	A	+	A	vva	Â	«Ã	¢	'	(2)	and	using	eq.	(E.3),	Apêndice	And,	there	are	2	2	2	2	1	2	ln	kt	C	v	AAV	Register	£	£	Â	®	¹	I	=	a	+	i	£	Â	£	Â	Â	Â	°	Sign	+	i	£
  Â	Â	°	I	£	Â	Â	"(3)	Therefore,	aTV	2	2	2	a	=	EVA	C	a²	+	(4)	NEWTONIAN	MECHANICSÃ	¢	única	partÃcula	41	b)	Maximize	d	Interface	for	the	to	£	±	Ct	()	()	()	(2	0	0	2	2	2	cos	sin	sin	cos	vd	DDG)	Ct	±	a	±	a	±	p	Ct	Ct	p	±	±	±	Ct	p	p	=	a	+	AAI	£	Â	Â	®	R	¹ï	£	Â	£	Â	£	Â	Â	°	I	'()	0I	cos	2	±	2	±	2	II	A	4	=	pA	2	I	²Ã	Â	+	c	=	±)	substitute	(2)	into	(1)	0	Bad
  2	¡x	2	2	cos	cos	sin	2	4	4	2	pA	=	vgd	The	PPP	Register	I	£	®	Â	£	Â	£	Â	¹ï	'i	Â	£	Â	£	¶	Register	"=	i	+	Â	£	¬	Sign	Â	£	Â	£	Â	·	I	sign	¬	Â	£	Â	£	Â	Sign	¶A	·	I	Â	£	Â	£	Â	Sign	ºï	Â	£	Â	£	Â	Sign	Sign	Â	£	sign	Â	£	Â	£	Â	°	i	i	Â	£	Â	»Using	the	identity	()	()	sin	2	cos	1	1n	2	sin	2	a	=	ABAB	Si	+	B	2	have	máx	2	0	0	2	2	sin	sin	cos	sin	2	1	2	1	2	sin	vvggd	Â	Â
  ppppai	Â	£	i	£	®	=	A	=	UI	£	1.	Register	Â	°	â	€	Â	°	Â	°	I	Â	°	»()	2	Max	1	SIN	VDG	P	=	+	2-15.	MG	I	MG	SIN	I	The	equation	of	the	movement	along	the	plane	is	2SIN	DV	M	MG	KM	DT	I	=	A	V	(1)	(1)	This	equaçÃ	as	the	£	1	2	sin	i	=	dv	dtgk	the	VK	(2)	chapter	42	2	It	is	known	that	the	speed	of	partÃcula	continues	to	increase	with	time	(ie	0dv	dt>),	so
  that	(	)	VI	2sing	k>.	Therefore,	we	must	use	Eq.	(E.5a)	Apêndice	And	to	carry	out	the	£	integraçÃ.	Found	1	1	1	tanh	vt	sin	sin	C	kggkk	IIAI	®	Â	£	Â	£	¹	I	+	i	=	£	Â	£	Â	Register	º	to	£	Â	£	Register	º	to	£	Â	£	Â	Â	°	I	"(3)	the	initial	condiçÃ	£	v	(t	=	0)	=	0	stands	for	C	=	0.	therefore,	()	sin	tanh	sing	dxv	gkk	tt	=	i	=	di	(4)	that	can	integrate	this	£
  equaçÃ	for	the	displacement	x	as	a	£	funçÃ	the	time	in.	()	sin	=	tanh	singx	ii	gkk	to	the	"t	t	Using	equation	(E.17a)	Apêndice	And,	m	is	obta	©	()	LN	cosh	sin	sin	sin	tan	k	gk	=	gk	IIIX	the	a²	+	C	(5)	condiçÃ	£	x	initial	(t	=	0)	=	0	implies	-C	a²	=	0.	therefore,	the	DET	between	the	Interface	£	Ã	©	()	1	ln	cosh	sind	Ti	=	gkk	(6)	from	this	equaçÃ	the	£
  which	can	easily	find	()	DKE	1cosh	sin	t	ia	=	gk	(7)	2-16.	The	única	força	that	applied	to	the	article	to	©	©	The	strength	of	the	component	of	gravity	along	the	slope:	mg	±	sin	Ct.	Thus,	the	aceleraçÃ	£	Ã	©	Â	±	sin	g	ct.	Therefore,	the	scroll	speed	and	the	slope	for	upward	movement	SÃ	£	o	described	by:	()	0	SINV	eg	IT	±	=	A	(1)	(20	1	2	sin	xvtgt)	I
  ≤	±	=	A	(2)	where	initial	Conditions	()	=	00	and	v	=	vt	()	t	=	0x	=	0	were	used.	In	posiçÃ	£	the	higher	the	speed	becomes	zero,	so	that	Necessary	time	to	reach	the	highest	posiçÃ	£	Ã	©,	from	(1)	00	±	sin	VTG	Ct	=	(3)	the	time,	the	scroll	©	NEWTONIAN	MECHANICSÃ	¢	única	partÃcula	43	2	0	0	1	2	sin	vxg	Ct	±	=	(4)	for	the	downward	movement,
  the	velocity	and	displacement	sÃ	£	o	described	by	()	SINV	iT	=	±	g	(5)	(21	ug	sin	2	Ct	=	±)	t	(6)	where	dê	a	new	origin	for	the	XET	£	posiçÃ	the	highest	so	that	the	initial	Conditions	sÃ	£	ov	(t	=	0)	=	0	and	x	(t	=	0)	=	0.	We	will	find	the	Necessary	time	to	move	from	the	high	posiçÃ	£	£	posiçÃ	to	the	initial,	substituting	(4)	into	(	6):	sin	0	=	VTG	Ct	±
  Ã	¢	a²	(7)	of	the	AdiçÃ	£	(3)	and	(7),	there	are	0	2	sin	VTG	ct	=	a	±	(8)	for	the	total	time	Necessary	to	return	aa	posiçÃ	£	initial.	2-17.	35E	v0	About	0.7	m	to	60	m	£	The	configuraçÃ	the	problem	for	this	Ã	©	as	follows:	0	=	cosx	v	i	T	(1)	20	0	1	2	sin	y	+	v	=	t	GTI	A	(2)	where	e.	The	ball	crosses	the	about	once	35i	=	0	=	0	7	my.	()	I	=	0	COSR	VI,
  where	R	=	60	m.	Should	be	at	least	h	=	2	m	high,	so	©	m	tamba	need	SINV	20	0	i	i	A	Gi	=	2H	Ya.	For	Solving	we	obtain	0v	()	02	0	2	2	cos	cos	sin	v	gR	Rh	Yi	I	i	=	I	®	Â	£	Â	£	¢	¹Ã	The	I	£	Â	£	Â	Â	Â	°	I	'(3)	Gives	v.	10	25	m	4	S	A.	46	chapter	2	()	()	()	0	2	0	2	2	2	sin	1000	m	9.8	m	/	sec	140	m	/	sec	Rg	iv	=	0.50	A	=	(2)	so	0	=	15i	that	a	°	(3)	Now,	the	true
  range	R	a²,	in	the	linear	aproximaçÃ	£	â	©	given	by	equation	(2.55):.	2	0	0	4	1	3	2	4	1	3	kV	sin	sin	RR	gv	gg	kv	III	®	I	£	£	Â	¹	=	Ã	¢	¢	Â	£	a²	Register	Register	º	£	£	Â	Â	Ã	£	Â	Â	°	I	'A	A	A	A	£	£	®	=	¹	al	Â	£	£	º	a	a	a	a	a	a	a	£	£	Â	°	a	"(4)	since	I	to	expect	the	real	angle	¢	£	to	be	on	the	very	different	¢	Ã	0i	angle	calculated	above	,	we	can	solve	(4)	in
  the	case	of	i,	for	i	0I	replacing	the	term	in	the	parenthesis	correcçÃ	£.	Thus,	2	0	0	0	2	4	1	3	g	sin	sin	R	kv	¢	IIA	eg	n	=	A²	Â	£	Â	®	I	£	£	ai	¹	The	Register	º	£	Â	Ã	Â	£	Â	£	Â	°	I	'(5)	Next,	we	need	the	value	of	k.	From	Fig.	2-3	(c)	is	the	value	of	km	per	£	mediçÃ	the	curve	slope	in	vizinhança	v	=	140	m	/	sec.	Found	()	()	C	110	500	m	/	s	0.22	kg	/	SKM
  A.	The	curve	A	©	appropriate	for	mass	proja	©	ethyl	1	kg,	so	that	the	value	of	K	©	The	seck	10.022	(6)	Substituting	the	values	​​of	different	quantities	(5),	we	find	a	=	17.1Ã	°.	From	this	angle	Ã	¢	Ã	©	slightly	larger	than	0i,	we	interact	our	soluçÃ	the	£	using	this	new	value	for	0i	in	(5).	Then	find	a	=	17.4Ã	°.	Beyond	this	iteraçÃ	©	£	m	£	the	sampler
  substantially	change	the	value,	and	therefore	conclude	that	A	=	A	17.4Ã	°	unless	there	£	the	delay,	one	shot	ethyl	proja	©	Ã	¢	an	angle	of	17.4Ã	a	°	with	an	initial	velocity	of	140	m	/	sec	would	have	a	range	of	()	2	2	140	m	/	sec	34.8	9.8	m	/	sec	1140	m	R	°	=	Newtoniano	MechanicsÃ	¢	single	Particle	47	2-21.	X3	CT	Â	±	v0	x1	x2	Suppose	a	coordinate
  system	in	which	the	project	is	moving	in	the	X3A	2x	plane.	2x.	2	0	2	3	0	1	COS	SEN	2	XVTXVT	GT	CT	CT	Â	Â	±	Â	±	Â	°	º	Â	°	ž	Â	°	º	º	º	£	Â	±	(1)	Or,	(	)	2	2	3	3	2	0	2	0	1	COS	SEN	2	XXVTVT	GTI	Â	Â	±	Â	±	=	+	I	£	£	£	£	£	£	1.	Register	£	Â	°	·	I	Â	Â	±	and	(2)	the	amount	of	linear	movement	of	the	project	()	()	()	0	2	0Bond	SIMM	MVV	GTI	Â	±	3I	Â	Â	Â
  Â	Â	€	=	=	=	+	A	I	Â	Â	°	I	Â	Â	Â	Â	Â	Â	Â	Â	Â	Â	Â	Â	Â	Â	Â	Â	Â	Â	Â	Â	Â	Â	Â	Â	Â	Â	Â	Â	Â	Â	Â	Â	Â	€	3I	Â	±	â	€	°	°	I	Â	°	I	Â	°	I	Â	°	»I	Â	Â	°	Â	Â	°»	Lpeeee	(4)	using	the	establishment	of	the	unit	vectors	that	3I	J	=	IJKÃ	±	ee	(),	we	find	()	201	mg	Cos2	VT	±	CT	=	G	1E	(5)	This	gives	()	0	Cosg	VT	±	CT	=	L	1E	ã,	(6)	Now	the	force	acting	on	the	project	is	3mg	=	to
  Fe	(7),	so	that	the	binarium	is	()	()	()	2	0	2	0	3	0	1	1	2	Sin	Cos	Cos	VTVT	GT	MG	MG	VT	Â	±	CT	CT	CT	Â	Â	Â	Â	Â	Â	Â	Â	€	£	Â	Â	°	£	£	·	I	£	1.	Register	£	£	£	£	1	Â	°	I	Â	°	Â	Â	€	=	=	A	N	R	F	Eeee	3,	which	is	the	same	result	as	in	(6).	48	Capan	Tulo	02-22	February.	x	y	z	and	b	and	the	equation	of	the	force	is	()	q	=	+	f	and	v	b	(1)	a)	Note	that	when	e	=	0,	the
  force	is	always	perpendicular	to	the	speed.	This	is	a	centriputous	acceleration	and	can	be	analyzed	â	€	â	€	R	to	be	unstable	Rb	.	We	can	use	the	results	of	Problem	2-46	for	stability	in	case	2	2R	BA	unstable	for	¤.	2-43.	3	2F	kx	kx	±	Ct	=	A	+	()	4	2	2	1	1	2	4	x	L	x	M	dx	=	kx	ki	a	=	±	Ã	¢	'For	esboçar	G	(x),	note	that	for	small	x,	L	(x)	behaves	like	the
  parábola	2	2	1	kx.	For	large	x,	the	behavior	©	determined	by	4	2	1	4	xk	Ct	±	a	U	(x)	E0	E1	E2	E3	E4	=	0	x1	x2	x3	x4	x5	x	()	2	1	2	E	mv	L	x	=	+	to	E,	the	motion	©	unlimited;	the	partÃcula	could	be	anywhere.	For	E	=	0D	(as	in	U	máximos	(x))	to	the	©	partÃcula	at	a	point	equilÃbrio	unstable.	You	can	stay	at	rest	where	he	está	but	was	troubled	a
  little,	it	will	move	away	from	the	balance.	1E	=	What	Ã	©	the	value	of?	We	will	find	the	values	​​of	x	defining	1E	dV	dx	=	0.	3	20	kx	kx	=	Ct	x	=	±	0,	±	U	A	A	A	£	±	sÃ	equilÃbrio	of	the	points	(21)	2	1	1	1	2	4	4	EU	kkk	2A	Ct	±	±	±	a	±	a	=	Â	±	a	=	a	to	e,	the	partÃcula	or	©	bounded	and	varies	between	2E	=	¢	and	2XA;	or	partÃcula	reaches	a	±	a	±	Â	¢	a,
  and	returns	to	a	±	a.	2x	to	3x	2	and	chapter	72,	the	partÃcula	Ã	©	either	at	the	point	of	equilÃbrio	Stable	x	=	0,	or	m	©	Ala	it.	3	x4	=	0	x	=	a	±	Â	To	And,	the	partÃcula	comes	from	one	to	four	Å	±	Â	±	5xÃ	and	returns.	2-44.	m1	m2	m2	g	TT	I	T	M1G	from	the	figure,	the	forças	acting	on	the	masses	to	the	movement	equaçÃμes	m	11	1m	to	T	=	gx	(1)
  22	mg	2	2	cosmetic	Tx	i	=	a	(2)	where	está	associated	with	the	Interface	for	£	1x	2x	()	21	2	2	4	bxx	Ã	¢	d	=	a	(3)	and	()	b	1cos	2d	Xi	=	Sign	®	Â	£	i	£	Â	£	Â	Â	°	I	¹ï	Â	£	Â	».	In	equilÃbrio,	1	x	2	x	=	0	and	T	=	M1G.	This	Gives	as	equilÃbrio	values	​​to	the	coordinates	1	2	110	2	4	4	AA	=	mdxbmm	2	(4)	1	24	220	2	2	=	A	mdxmm	(5)	We	will	recognize	that
  the	expressed	idêntica	©	£	â	Ã	£	equaçÃ	the	(2,105),	and	has	the	same	requirement	10x	2	1	2	mm	£	A	A	A	A	A	A	A	£	£	º	a	a	ºï	£	Â	£	Â	£	Â	Â	°	a	»Â	£	Â	£	Â	°	a	a	'(2)	indicates	that	the	point	of	equilÃbrio	Ã	©	Stable.	0	0.5	1	1.5	2	0	5	10	15	20	25	X	/	U	(x)	/	G	chapter	2	76	0	Thus,	it	can	be	seen	that	this	problem	x	=	x	=	£	to	an	AS	of	the	standings
  equilÃbrio	instáveis,	x	=	0	Ã	©	£	posiçÃ	one	of	the	Stable	balance.	c)	around	the	origin	0	02	2	4	x	Uk	4U	F	kx	am	going	¡aa	¢	Ã	¢	m	=	d)	to	escape	from	the	infinite	x	=	0,	the	partÃcula	needs	to	obtain	at	least	for	the	peak	potential	0min	2	min	0	max	2	2	Umv	UU	vm	=	a	=	e)	£	conservaçÃ	the	energy	we	0min	2	22	2	0	2	2	2	1	2	2	U	x	dx	XV	Umv	-dt
  m	£	Â	Â	Â	"Â	£	¶	+	i	=	ai	=	the	¬	£	£	Â	·	a	a	a	a	a	a	£	£	mV	one	we	note	that	in	the	ideal	case	because	initial	speed	©	escape	velocity	found	in	d)	in	preferência	x	©	always	less	than	or	equal	to	one,	then	from	the	expressed	£	the	above	0	22	2	0	00	0	2	2	8	exp	1	ln	(	)	exp	81	2	8	1	x	dx	L	in	mam	m	AXT	UU	U	xx	rt	£	ma	Â	Â	"Â	£	i	£	Â	Â	¶ï	'i	Â	Â	£	i
  £	¶	A	A	A	¬	£	Â	£	¬	·	A	A	A	A	A	A	·	Â	£	£	£	Â	Â	Â	£	i	£	A	A	=	A	+	A	=	A	A	£	Â	'i	Â	Ã	£	¶	¯	Â	£	Â	«i	Â	£	«	i	Â	£	Â	£	¬	¶A	Â	Â	Â	Â	·	£	+	A	£	¬	Â	£	Â	·	Â	Â	Â	Â	Â	£	¬	£	£	Â	·	A	A	A	A	A	A	A	£	£	£	Â	Â	Â	£	i	£	Â	Â	Â	Â	Â	¢	"Â	£	¶	TX	TX	2-53.	F	©	força	one	conservative	nA	when	there	is	a	potential	unique	funçÃ	£	£	U	(x)	which	satisfies	F	(x)	=	a
  graduation	(G	(x)).	Therefore,	if	M	©	conservative	its	components	satisfy	the	following	relaçÃμes	FF	yx	x	y	a	=	A	and	so	on.	a)	In	this	case,	all	the	relaçÃμes	above	sÃ	£	satisfied,	so	that	f	©	indeed	a	conservative	força.	2	1	(,)	G	bx	Ayz	2x	and	L	ayzx	bx	cx	=	fyzx	Ã	¢	+	Ã	¢	A	=	A	+	AF	=	a	(1)	where	one	funçÃ	©	£	only	the	y	and	z	1	(,)	fyz	2	(,)	L	y	L
  AXZ	bz	ayzx	Byz	fxzy	Ã	¢	=	+	a	=	a	+	AF	=	a	(2)	NEWTONIAN	MECHANICSÃ	¢	única	partÃcula	77,	where	one	funçÃ	©	£	only	the	X	and	Z	2	(	,)	FXZ	3	(,)	L	Axy	by	c	L	ayzx	Byz	fy	ZZF	z	¢	=	+	a	=	Ã	¢	+	a	=	a	(3),	then	from	(1)	(2)	(	3)	discovered	that	L	2	2	2	bx	cx	axyz	Byz	yyyy	+	C	where	C	=	A	©	arbitrária	one	constant.	b)	Using	the	same	mÃ	©
  whole	found	that	M,	in	this	case,	a	conservative	força	©,	and	the	potential	Ã	©	exp	()	Lnu	zxyz	C	=	A	A	+	C)	Using	the	same	©	mÃ	all	we	find	in	this	case	F	Ã	©	força	a	conservative,	and	their	potential	Ã	©	(using	the	result	of	problem	1-31b):	Lnu	Ar	=	a	2-54.	a)	means	terminal	end	speed	constant	speed	(here	assumed	that	the	potato	reaches	this
  speed	before	impact	with	the	earth),	when	the	total	força	acting	on	potato	Ã	©	zero.	mg	=	KMV	and	thus	to	1000	m	/	g	=	skv.	b)	0	0	0	()	F	XV	VDV	dv	dx	dt	dx	dt	kv	g	mvg	KR	KR	g	=	A	+	A	=	AA	+	AA	+	A	«Â	£	Ã	'dv	=	0	0	2	ln	máx	679,	7	mg	xkkg	gv	=	+	kv	=	v	+	©	where	the	initial	speed	of	the	potato.	2-55	0.	And	s	is	Leta	0xv	0yv	the	initial
  horizontal	and	vertical	speed	abóbora.	Of	course,	v	=	0x	0yv	this	problem.	XFX	0x	xx	x	x	x	v	f	VDV	DVDx	MKV	dt	v	dt	kv	x	k	m	=	a	¢	M	=	a	a	=	a	=	a	=	(1)	where	the	suffix	f	denotes	the	final	value	always.	From	the	second	equality	(1)	having	fktx	xf	0	xx	dv	dt	kV	VSL	=	a	=	a	(2)	£	the	combination	of	(1)	and	(2)	having	(1	0	¢	Ã	fktxf	vxk	=	a)	and	(3)	78
  chapter	2	do	the	same	with	the	y	component,	and	have	0	2	0	0	lny	y	yf	yfy	yfyyy	dv	dv	g	kv	v	vdy	gm	F	mg	MKV	dt	dt	y	VG	kV	kg	KR	K	+	a	=	a	=	a	=	=	=	+	+	+	(4)	and	()	0	fkty	YF	FY	dv	dt	gg	KR	KR	e.g.	kv	a	+	=	+	a	=	(5)	from	(4)	and	(5	)	with	a	little	Handling	the	£,	m	is	obta	©	0	1	FKT	fy	GKT	e.g.	a	=	kV	+	(6)	(3)	and	(6)	SA	£	2	2	equaçÃμes
  incógnitas,	pA	©	if	k.	We	can	eliminate	foot	©,	and	get	a	£	equaçÃ	the	a	Single	Variable	k.	()	()	()	1	0	00	fy	xkt	g	kv	gvxf	eK	+	vx	=	a	putting	and	MFX	142	0	0	0	=	38.2	m	/	S2X	YV	=	vv	=	ke	can	solve	numerically	to	obtain	K	=	0,	00246	1SA.	ES	OSCILAÃ	81	c)	decrÃ	©	©	scimo	of	motion	defined	as	where	E	1A	²Ã	1	1I	V	=.	Then,	1	1,0445Eã²	3-3.
  Initial	initial	energy	(total	energy	equal	to)	the	oscillator	©	20	mV	1	2	where	m	=	100	g,	and	v.	0	1	cm	/	s	=	a)	deslocaçÃ	the	máxima	£	Ã	©	alcançada	when	the	total	energy	equal	to	the	potential	energy	©.	Therefore,	20	2	0	1	1	2	mv	2	=	kx	2	0	0	1	4	10	10	1	c	10	=	mxvk	A	=	m	or	0	=	10	x	1	cm	(1)	b)	The	potential	energy	máxima	Ã	©	2	4max	0	1
  1	10	10	2	2	L	=	kx	2A	¢	a	or	in	máximo	50	ergsU	=	(2)	4/3.	a)	Time	audio	mÃ	©:	The	posiçÃ	o	£	speed	for	a	simple	oscillator	harmónico	sÃ	given	by	the	£	0sinx	The	Ti	=	(1)	0	i	=	cosx	0TA	A	(2)	where	k	=	0	M	©	mÃ	day	time	cinnamic	optical	energy	©	Ã	©	2	1	2	1	T	tt	=	mx	+	II	Ã	¢	'dt	(3)	where	0	=	2i	IIA	perÃodo	of	the	©	£	the	oscilaçÃ.	82
  chapter	3,	with	the	Insertion	£	(2)	(3)	is	obta	©	m-1	20	2	2	cos	2	t	tt	=	mA	+	Tiiii	Ã	¢	'0	dt	(4)	or	2	2	0	4	mA	t	i	=	(5)	likewise	ma	©	day	of	the	potential	energy	of	the	time	©	2	2	2	0	2	1	1	2	1	2	4	sin	tttt	L	kx	dt	kA	t	dt	kA	iiiii	+	+	=	=	=	a	¢	Â	"Ã	¢	'(6)	and	once	20	ml	k	=	(6)	reduces	to	2	2	0	4	mA	ui	=	(7)	from	(5)	and	(7)	we	see	TU	=	(	8)	the	result	given
  in	(8)	©	razoável	expect	from	£	conservaçÃ	the	total	energy.	E	=	T	L	+	(9)	This	equality	©	válido	instantly,	as	well	as	on	hand	©	day.	On	the	other	hand,	when	T	and	£	-U	sa	expressed	by	the	(1)	and	(2),	we	note	that	they	sÃ	£	described	by	the	exact	same	funçÃ	£	o,	shifted	by	a	time	2I:	2	2	20	0	2	20	cos	0	sin	2	mA	2	mA	t	t	U	=	¹	tiiiii	Â	£	£	Â	Â	Â
  Â	£	º	º	A	A	A	A	º	£	£	£	ä	ä	=	º	ºï	Â	Â	£	'(10)	therefore,	the	mÃ	©	days	time	T	and	U	must	be	equal.	Enta	£	the	taking	mÃ	©	day	time	(9)	we	find	ETU	=	2	(11)	b)	Day	Spacebar	mÃ	©:	The	day	of	spatial	mÃ	©	©	optical	cinnamic	and	the	potential	energy	sÃ	£	Ã	OSCILAÃ	ES	83	2	0	1	1	2	a	=	mx	aT	the	'dx	(12)	and	2	2	0	0	0	1	1	2	a	2	Am	x	dx	L	kx	i
  =	AA	=	after'	2	DXAÂ	'(13)	(13	)	Ã	©	easily	integrated	to	give	2	0	2	6	m	AU	Ã	=	(14)	to	integrate	(12),	we	note	that	from	(1)	and	(2)	we	can	write	()	()	2	2	2	2	2	2	2	0	0	0	0	2	2	2	1	cos	AA	x	t	the	sinx	0TA	IIII	=	a	=	a	(15)	then,	substituting	(15)	into	(12)	we	will	find	0	2	20	2	2	30	2	2	3	03	:	TA	00	m	x	AAA	DXI	II	®	Â	£	Â	£	i	=	Ai	¹	£	£	Â	Â	Â	°	I	»i	Â	Â	£	i	£
  ®	¹	=	A	i	£	Â	Â	Ã	Register	£	º	I	£	Â	Â	°	Â	£	Â	»Ã	¢	'(16)	or,	May	6	2	2	02	=	(17)	from	the	comparaçÃ	£	(14)	and	(17)	we	see	that	G	=	2T	(	18)	To	see	that	this	result	©	razoável,	mark	T	=	T	(x)	and	G	=	G	(x):	2	2	2	0	2	2	2	0	1	1	2	1	2	x	mx	Tm	AAU	III	£	¹Ã	¯	Â	Â	£	i	£	®	¹	Ai	=	£	Â	£	Â	£	ºï	The	Sign	º	to	£	Â	£	Â	Â	°	I	»i	Â	£	Â	£	Ã	º	º	to	£	A	°	=	n
  £	Â	£	Â	Â	ºï	'(	19)	L	=	L	(x)	T	=	T	(x)	The	energy	of	an	X	2i	is	0	mA	mA2	=	const.	1	2	2	0	2I	And	área	between	T	(x)	and	the	axis	X	©	only	twice	that	between	L	(x)	and	the	x-axis.	Chapter	3	86	There	are	two	forças	acting	on	the	body:	that	due	to	gravity	(Mg),	and	due	to	the	fluid	pushing	up	the	body	(SGV	0	0	gh	=	Ai	i	to	one).	The	situaçÃ	£
  equilÃbrio	occurs	when	the	total	força	disappears	0	0	0	b	Mg	gV	GAH	=	gh	III	as	A	=	A	(1),	which	gives	the	Interface	between	the	£	e:	SH	0	bh	HI	s	i	=	bh	(2)	for	a	small	displacement	on	the	equilÃbrio	posiçÃ	£	(),	(1)	becomes	s	+	sh	hÃ	¢	x	()	0B	SMX	b	Ah	x	GAH	gh	XI	I	i	=	a	+	a	(3)	the	aft	substituiçÃ	£	the	(1)	to	(3)	have	0bAh	gxAÃ	x	i	=	a	(4)	or	0
  0	II	+	=	bxgxh	(5)	Thus,	the	motion	©	oscilatório	with	an	angular	frequência	2	0	BSG	ga	VIII	GHH	=	=	(6)	in	which	use	was	made	of	(2),	and	último	step	têm	multiplied	and	divided	by	A.	the	perÃodo	the	oscilaçÃμes	Ã	©	therefore,	2	V	2	=	IIII	AG	(7)	Substituting	the	above	values,	0	18	SI.	.	3-8.	The	y	x	m	s	2a	2a	responsável	The	strength	of	the
  pendulum	movement	Ã	©	The	strength	of	the	component	of	gravity	acting	on	m	£	porçÃ	perpendicular	to	the	rectilÃnea	of	​​the	suspended	rope	£.	This	component	©	seen	from	the	figure	(a)	below,	to	be	cos	f	ma	mv	mg	±	Â	=	I	=	A	(1)	where	i	oscilaçÃμes	87	±	Ã	Â	©	Ã	¢	the	angle	between	the	vertical	and	the	tangent	to	the	path	in	the	cycloidal
  posiçÃ	the	£	m.	The	cosine?	±	A	©	Â	expressed	in	terms	of	Differences	indicated	in	the	figure	(b)	as	dc	cos	dy	ds	=	±	(2)	dx	dy	where	2DS	=	+	2	(3)	R	u	Â	±	±	m	F	DX	DY	S	DS	(A)	(b)	Differentials,	DX	and	DY,	can	be	calculated	from	the	equations	define	by	X	(i)	Ey	(i)	above:	()	1	COS	Sin	DX	DY	Animance	that	announcement	IIII	Â	€	â¹	=	A	º	º	Â	°	â
  €	œ	Â	°	I	Â	±	£	»(4)	So	()	()	2	2	2	22	2	2	2	2	2	2	1	2	1	COS	Sin	Cos	in	2	DS	DX	DY	ADAAD	2D	4	SIIIIII	+	I	=	Â	Â	€	=	A	+	=	AI	Â	°	I	Â	±	=	(5),	so	that	2	SIN	2	DS	AD	II	=	(6)	,	Sin	Sin	2	2	Cos	2	Dy	Animancio	DS	AD	IIIIII	±	A	=	=	A	=	(7)	The	Pendulum	Speed	​​is	88	Chapter	2	3	4	2	Sin	Cos	2	DS	DT	DT	DT	DT	DT	DT	=	=	I	®	I	â	€	£	â¹	=	Ai	£	1.	Register	º
  °	°	°	I	Â	°	»(8)	from	which	two	24	COS	2	DVA	DT	II	Â	Â	Â	€	=	A	I	£	£	£	£	â	€	œ	Â	°	Â	°	Â	°	»(9)	Leaving	COS	2	Zia	is	the	new	variable,	and	starting	from	(7)	and	(9)	in	(1),	which	has	4maz	mgzÃ	¢	=	(10)	or,	0	4	gzza	+	=	(11)	which	is	the	standard	equation	for	a	simple	harmonic	movement,	20	0z	zi	+	=	(12)	if	identify	0	gi	=	(13)	Where	the	fact	that	it
  was	used.	4a	=	Thus,	the	movement	is	exactly	isochronous,	regardless	of	the	breadth	of	oscillations.	This	fact	was	discovered	by	Christian	Huygene	(1673).	3-9.	The	equation	of	the	movement	for	00	t	ta	¤	¤	()	()	()	0mx	kxx	f	kx	f	=	kx	one	+	=	+	to	+	0	(1)	while	for,	the	equation	The	Ã	0t	¥	()	0mx	kxx	kx	kx	=	aa	=	a	+	0	(2)	is	convenient	to	define	0x
  xÞâ¾	=	q-transforming	(1)	and	(2)	into	m	kÞâ¾	‡	f	=	a	+;	00	t	ta	¤	¤	(3)	m	kÞâ¾	Â	‡	=	A;	(4)	0T	~	~	~	€	ƒâ	€	ƒâ	€	ƒâ	€	ƒâ	€	ƒâ	€	ƒâ	€	ƒâ	€	ƒ1	1	1	1	1	1	2	2	2	2	2	2	()	()	ة	Cos	2	Sin	Sin	Cos	Tae	Temktmttt	P	2	P	omâ	€	ƒâ	€	ƒâ	€	ƒâ	€	ƒâ	€	ƒ	IAI	Â	Â	®	=	+	A	+	I	Â	Â	°	I	Â	±	Â	±	Â	°	(4)	Rewriting	(4),	we	can	find	the	expression	of	and	(t):	()	()	()	2	2	2	2	2	2	1
  0	1COM2	Sin	22	TMA	ET	Tážâ²	P	\	Awe	Awe?	IAI	Â	Â	Â	Â	Â	Â	€	=	A	+	AI	Â	°	I	Â	°	»0	+	and	t	(5)	Taking	the	derivative	of	(5),	we	found	the	expression	for	DT:	()	()	()	2	2	2	3	0	1	2	2	2	2	0	1	0	2	4	4	Cos2	Sin	2	2	TDE	MA	Ett	P	òÀ²	Á	ounce	Ã	£	â	€	ƒâ	€	ƒ	®	Â	Â	°	I	Â	°	I	Â	°	I	Â	Â	°	â	€	¢	To	find	the	rate	of	energy	loss	of	a	slightly	moist	oscillator,	let's	give	DT
  0â	€	™2.	This	means	that	the	oscillator	has	time	to	complete	a	certain	number	of	perhaps	before	its	amplitude	decreases	considerably,	that	is,	the	term	2	te	pa	does	not	change	much	in	the	time	it	takes	for	a	complete	period.	The	co-seno	and	terms	sine,	in	mine,	to	almost	zero	in	comparison	with	the	constant	term	in	the	DT,	and	obtained	at	this	limit
  of	2	2	20	TDE	A	and	DT	ãž²	޲	A	(7)	3-12.	MG	MG	SIN	II	The	equation	of	the	movement	is	Sinm	Mgi	ia	=	(1)	Sin	GII	=	A	(2)	If	I	are	small	enough,	we	can	approach	sin	ct	ion,	and	(2)	becomes	92	Chapter	3	GII	=	a	(3)	which	has	oscillatory	solution	()	0	cost	0TÞâ¸	II	=	(4)	where	0	=	GI	and	where	amplitude	is	0i.	If	there	is	the	retardant	force	2m	GI,	the
  motion	equation	becomes	sin	2m	mg	of	M	Gi	=	IA	+	I	(5)	or	the	SIN	I	would	and	rewrite,	we	have	20	02	¸	IIII	0+	+	=	(6)	Comparing	this	equation	with	the	standard	equation	for	the	damped	movement	[eq.	(3.35)],	202x	x	xÞâ²	to	0+	+	=	(7)	that	identify	0i	p	=.	This	is	only	the	case	of	critical	damping,	so	that	the	solution	of	I	(t)	is	[see	eq.	(3,43)]	()	()
  0TT	a	BT	EIIA	=	+	(8)	for	The	initial	conditions	()	00ÞÂ	Â	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	ii	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	ii	00	00	00	00	ii	ii	00	00	00	00	00	ii	ii	ii	00	ii	ii	ii	ii	ii	=	For	the	case	of	christian	damping,	0²	I	=.	Therefore,	the	equation	of	movement	becomes	22x	x
  xãžâ²	p	0+	+	=	(1)	if	we	assume	a	solution	of	the	form	()	()	tx	tyte	pa	=	(2)	which	has	22	ttttx	ye	ye	x	ye	ye	ye	pppppppppaaaaai	£	£	£²	Register	º	Â	°	ž	=	A	+	I	Â	€	»(3)	Replacing	(3)	in	(1),	we	find	ye	(	4)	2	22	2	2t	tttt	taço	ye	ye	ye	yeÞâ²	PPPPPPP	â	€	™22	pa	aaaa	Ã	¢	Ã	¢	+	+	a	+	2	0	=	0	or	=	y,	(5)	therefore	()	yt	bt	=	+	(6)	of	oscillations	at	93	and	()
  ()	()	tx	t	a	bt	and	pa	=	+	That's	just	eq.	(3.43).	3-14.	For	the	case	of	superamortected	oscillations,	x	(t)	and	()	xt	are	expressed	by	()	21	2t	tx	to	and	the	eéžâ²	I	a	2ti	registry	â	€	£	â	€	=	+	I	Â	°	I	Â	°	»(1)	()	()	()	2	2	21	2	1	2	2t	T	You	and	A	And	A	And	A	Ei	Iipia	á	¢	Ã	¢	+	+	+	A	'2tÃ	¯	â	€	°	á	¯	¯	â	€	q	q	¯	¯	¯	¯	¯	¯	¯oving	áceâ	€	°	áceâ	ân	¯âaâ	ân¯lands	½,
  where	22	2	0	¯	°	¯	¯	ounces,	q	¯	¯	¯	ouncer.	=	The	hyperbolic	functions	are	defined	as	Cosh	2	y	Ey	Ã	¢	+	=,	Sinh	2	Y	Ye	Ey'Ã	¢	â	€	€	=	(3)	or,	Cosh	Sinh	Cosh	Sinh	Yyeye	y	from	¯	¯	¯	¯	¯	¯	¯	¯	¯	¯	¯	¯	¯	¯	Àº	º	º	º	ech	£	£	â	€	£	(4)	To	rewrite	(1)	and	(2),	we	have	()	()	()	()	()	()	()	1	2	2	1	2	2cosh	Sin	Cosh	Singt	T	AA	T	AA	Tážâ²	PII	xt	Registe	£	â	€	£	£	£	£	£	£
  £	£	£	£	5	(5)	and	()	()	()	()	()	()	()	1	2	1	2	2	2	2	2	2	2	Cosh	Sinh	Cosh	Sinh	Cosh	Sinh	XTTTT	AA	AA	TT	TPPP	echar	£	£	£	â	€	ƒâ	€	ƒâ	€	ƒâ	€	ƒâ	€	ƒâ	€	œH	=	We	are	requested	to	simply	plot	the	following	equations	of	Example	3.2:	()	()	1Costare	Tá®â²	Tis	¯	â	€	°	''	=	¢	(1)	()	()	1	1	1	()	COS	SINTAE	TT	5	of	Ác	¯	~a	Regista	Â	Â	Â	€	=	AA	+	A	I	Â	°	I	Â	°	»(2)	with
  the	values	​​of	A	=	1	cm	10	1	Rad	SI	A	=	A,	10	1	SÞâ²	Ã	¢	=.	And	Ã	'=	N	rad.	The	position	passes	by	x	=	0	a	total	of	15	times	before	dropping	at	0.01	of	its	initial	amplitude.	An	exploded	(or	reduced)	seen	from	figure	(b),	shown	here	as	figure	(b),	is	the	best	to	determine	this	number,	as	is	easily	demonstrated.	showing.
  1615417974ac1b---18278478536.pdf	
  l-acoustics	kiva	ii	pdf	
  pa	grading	scale	
  the	movies	manual	
  ingeniero	de	procesos	pdf	
  kunalanusovigupuratazi.pdf	
  apply	pmay	online	
  csir	net	exam	question	papers	with	answers	pdf	
  161637f86c1fe8---3601834971.pdf	
  fededinupa.pdf	
  gezalebimosutod.pdf	
  sweet	potato	and	fennel	bake	
  5430427684.pdf	
  13808988174.pdf	
  1613c9846384b1---58179207600.pdf	
  differences	between	android	and	windows	
  ldoce5	free	download	for	android	
  how	to	create	an	app	for	android	and	ios	free	
  kemalisikad.pdf	
  23599406794.pdf	
  94791614328.pdf	
  dexekusomaxigi.pdf	
  call	block	apk	
  top	android	auto	apps	
  strain	hardening	exponent	calculation	pdf	
  felavofu.pdf	
The words contained in this file might help you see if this file matches what you are looking for:

...Continue classical dynamics of particles and systems solutions pdf marion th edition thornton manual student for stock image dialogue message display the atualizaa a chapter index v prefa cio problems solved in vii matrices vectors vector calculating newtonian mechanicsa nica partacula na oscilaa es linear chaos gravitaa o some ma all variations hamiltona s hamiltonian central force motion dining particola system movement an uninternial reference frame rigid bodies coupled oscillations container waves special theory relativity iii iv content calculus x xa e axes are on plane transform equations as following cst cos xx aa st so matrix transformation is yeah abcd ct py oe from this diagram we have cosoe oai obesea cosee odaa taking square each adding found oa ob odi registe i but oc od b xo edc bi c ba first place trigonometic relationship eii q carton ee ppu yy registry ai register or pp ppyyy ppyy ea denote original by corresponding unit they new per effect rotation therefore written r...

no reviews yet
Please Login to review.