jagomart
digital resources
picture1_Sklearn Cheat Sheet


 192x       Filetype PDF       File size 0.25 MB       Source: intellipaat.com


File: Sklearn Cheat Sheet
python for data working on model science model choosing t r a i n t e s t data cheat sheet supervised learning estimator naive bayes unsupervised learning estimator linear ...

icon picture PDF Filetype PDF | Posted on 03 Feb 2023 | 2 years ago
Partial capture of text on file.
                 PYTHON FOR DATA                                                                                                                                      Working On Model
                                     SCIENCE                                                                                                       Model Choosing                                                                                  T r a i n - T e s t  
                                                                                                                                                                                                                                                           Data
                           CHEAT SHEET                                                                       Supervised Learning Estimator:           •   Naive Bayes:                           Unsupervised Learning Estimator:
                                                                                                             • Linear Regression:                     >>> from sklearn.naive_bayesimport         •   Principal Component Analysis (PCA):     Supervised:
                                                                                                             >>>from sklearn.linear_modelimport       GaussianNB                                 >>> from sklearn.decomposition import       >>>new_ lr.fit(X, y)
                                                                                                             LinearRegression                         >>> new_gnb= GaussianNB()                  PCA                                         >>> knn.fit(X_train, y_train)
                    Python Scikit-Learn                                                                      >>> new_lr =                             •   KNN:                                   >>> new_pca= PCA(n_components=0.95)         >>>new_svc.fit(X_train, y_train)
                                                                                                             LinearRegression(normalize=True)         >>> from sklearnimport neighbors           •   K Means:                                Unsupervised : 
                                                                                                             • Support Vector Machine:                >>>                                        >>>from sklearn.cluster import KMeans       >>> k_means.fit(X_train)
                                                                                                             >>> from sklearn.svmimport SVC           knn=neighbors.KNeighborsClassifier(n_ne    >>> k_means= KMeans(n_clusters=5,           >>> pca_model_fit= 
                                                                                                             >>> new_svc= SVC(kernel='linear')        ighbors=1)                                 random_state=0)                             new_pca.fit_transform(X_train)
                                  I n t r o d u c t i o n
        Scikit-learn:“sklearn" is a machine learning library for the Python programming language. 
        Simple and efficient tool for data mining, Data analysis and Machine Learning.                                                                                   P o s t - P r o c e s s i n g
                                 Importing Convention -import sklearn
                                P r e p r o c e s s i n g                                                           P r e d i c t i o n                                                                  Model Tuning
                                                                                                             Supervised:                                          Grid Search:                                             Randomized Parameter Optimization:
            Data Loading                                       T r a i n - T e s t                           >>>y_predict=                                        >>> from sklearn.grid_searchimport GridSearchCV          >>> from sklearn.grid_searchimport RandomizedSearchCV
                                                                                                             new_svc.predict(np.random.random((3,5)))             >>> params= {"n_neighbors": np.arange(1,3), "metric":    >>> params= {"n_neighbors": range(1,5), "weights": 
        • Using NumPy:                                                 Data                                  >>>y_predict= new_lr.predict(X_test)                           ["euclidean", "cityblock"]}                    ["uniform", "distance"]}
        >>>import numpyas np                                                                                 >>>y_predict= knn.predict_proba(X_test)              >>> grid = GridSearchCV(estimator=knn,                   >>> rsearch = RandomizedSearchCV(estimator=knn, 
        >>>a=np.array([(1,2,3,4),(7,8,9,10)],dtype=int)                                                                                                           param_grid=params)                                       param_distributions=params, cv=4, n_iter=8, random_state=5)
        >>>data = np.loadtxt('file_name.csv',               >>>from sklearn.model_selection                  Unsupervised:                                        >>> grid.fit(X_train, y_train)                           >>> rsearch.fit(X_train, y_train)
           delimiter=',')                                   import train_test_split                          >>>y_pred= k_means.predict(X_test)                   >>> print(grid.best_score_)                              >>> print(rsearch.best_score_)
                                                                                                                                                                  >>> print(grid.best_estimator_.n_neighbors)
        • Using Pandas: 
        >>>import pandas as pd                              >>> X_train, X_test, y_train, y_test = 
        >>>df=pd.read_csvȋǮfile_name.csvǯ,header=0)         train_test_split(X,y,random_state=0)                                                                  E v a l u a t e   P e r f o r m a n c e
                                                                                                              Classification:                       Regression:                                                Clustering:                                Cross-validation:
                             Data Preparation                                                                 1. Confusion Matrix:                  1. Mean Absolute Error:                                    1. Homogeneity:                            >>> from 
                                                                                                              >>> from sklearn.metricsimport        >>> from sklearn.metricsimport mean_absolute_error         >>> from sklearn.metricsimport             sklearn.cross_validation
                                                                                                                    confusion_matrix                                                                           homogeneity_score                          import cross_val_score
         • Standardization                               • Normalization                                      >>> print(confusion_matrix(y_test,    >>> y_true= [3, -0.5, 2]                                   >>> homogeneity_score(y_true,              >>> 
         >>>from sklearn.preprocessing import            >>>from sklearn.preprocessing import                       y_pred))                        >>> mean_absolute_error(y_true, y_predict)                 y_predict)                                 print(cross_val_score(knn, 
         StandardScaler                                    Normalizer                                         2. Accuracy Score:                    2. Mean Squared Error:                                     2. V-measure:                              X_train, y_train, cv=4))
         >>>get_names= df.columns                        >>>pd.read_csv("File_name.csv")                      >>> knn.score(X_test, y_test)         >>> from sklearn.metricsimport mean_squared_error          >>> from sklearn.metricsimport             >>> 
         >>>scaler =                                     >>>x_array= np.array(df[ǮColumn1ǯ]Ȍ                  >>> from sklearn.metricsimport        >>> mean_squared_error(y_test, y_predict)                  v_measure_score                            print(cross_val_score(new_
         preprocessing.StandardScaler()                  #Normalize   Column1                                       accuracy_score                  3. R² Score :                                              >>> metrics.v_measure_score(y_true,        lr, X, y, cv=2))
         >>>scaled_df= scaler.fit_transform(df)          >>>normalized_X=                                     >>> accuracy_score(y_test, y_pred)    >>> from sklearn.metricsimport r2_score                    y_predict)
         >>>scaled_df=                                   preprocessing.normalize([x_array])                                                         >>> r2_score(y_true, y_predict)
         pd.DataFrame(scaled_df, 
         columns=get_names)m                                                                                                                                                                                                              FURTHERMORE: 
                                                                                                                                                                                              Python for Data Science Certification Training Course
The words contained in this file might help you see if this file matches what you are looking for:

...Python for data working on model science choosing t r a i n e s cheat sheet supervised learning estimator naive bayes unsupervised linear regression from sklearn bayesimport principal component analysis pca modelimport gaussiannb decomposition import new lr fit x y linearregression gnb knn train scikit learn components svc normalize true sklearnimport neighbors k means support vector machine cluster kmeans svmimport kneighborsclassifier ne clusters kernel ighbors random state transform o d u c is library the programming language simple and efficient tool mining p g importing convention tuning grid search randomized parameter optimization loading predict searchimport gridsearchcv randomizedsearchcv np params arange metric range weights using numpy test numpyas proba rsearch array dtype int param distributions cv iter loadtxt file name csv selection delimiter split pred print best score pandas as pd df read csvfile header v l f m classification clustering cross validation preparation con...

no reviews yet
Please Login to review.