jagomart
digital resources
picture1_Fem Item Download 2023-01-29 18-24-03


 133x       Filetype PDF       File size 0.48 MB       Source: www.iist.ac.in


File: Fem Item Download 2023-01-29 18-24-03
finite element method abdusamada salih department of aerospace engineering indian institute of space science and technology thiruvananthapuram 695547 india salih iist ac in ii contents 1 introduction 3 1 1 ...

icon picture PDF Filetype PDF | Posted on 29 Jan 2023 | 2 years ago
Partial capture of text on file.
               FINITE ELEMENT METHOD
                        AbdusamadA.Salih
                      Department of Aerospace Engineering
                   Indian Institute of Space Science and Technology
                      Thiruvananthapuram - 695547, India.
                           salih@iist.ac.in
         ii
                  Contents
                  1 Introduction                                                                                      3
                      1.1   Finite Difference Method      . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    4
                      1.2   Finite Element Method      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    5
                            1.2.1   Direct Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       5
                            1.2.2   Variational Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . .      5
                            1.2.3   Weighted Residual Method . . . . . . . . . . . . . . . . . . . . . . . .          5
                  2 Direct Approach to Finite Element Method                                                          7
                      2.1   Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .      7
                      2.2   Linear Spring System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .      7
                      2.3   Solution of System of Equations . . . . . . . . . . . . . . . . . . . . . . . . . .      11
                      2.4   Direct Approach to Steady-Sate Heat Conduction Problem . . . . . . . . . . . .           13
                  3 Calculus of Variations                                                                           15
                      3.1   Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     15
                      3.2   Functionals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    15
                      3.3   First Variation of Functionals   . . . . . . . . . . . . . . . . . . . . . . . . . . .   16
                      3.4   The Fundamental Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . .        22
                      3.5   Maxima and Minima . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .        22
                            3.5.1   Maxima and minima of functionals . . . . . . . . . . . . . . . . . . . .         23
                      3.6   The Simplest Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       25
                            3.6.1   Essential and natural boundary conditions . . . . . . . . . . . . . . . . .      28
                            3.6.2   Other forms of Euler–Lagrange equation       . . . . . . . . . . . . . . . . .   28
                            3.6.3   Special cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    29
                      3.7   Advanced Variational Problems . . . . . . . . . . . . . . . . . . . . . . . . . .        30
                            3.7.1   Variational problems with high-order derivatives     . . . . . . . . . . . . .   30
                            3.7.2   Variational problems with several independent variables      . . . . . . . . .   31
                      3.8   Application of EL Equation: Minimal Path Problems . . . . . . . . . . . . . . .          31
                            3.8.1   Shortest distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    31
                            3.8.2   The brachistochrone problem . . . . . . . . . . . . . . . . . . . . . . .        32
                            3.8.3   Deflection of beam – variational formulation . . . . . . . . . . . . . . .        36
                                                                    iii
                 CONTENTS                                                                                          1
                     3.9   Construction of Functionals from PDEs . . . . . . . . . . . . . . . . . . . . . .      38
                     3.10 Rayleigh–Ritz Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .      40
                 4 Weighted Residual Methods                                                                     45
                     4.1   Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   45
                     4.2   Point Collocation Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     48
                     4.3   Subdomain Collocation Method . . . . . . . . . . . . . . . . . . . . . . . . . .       55
                     4.4   Least Square Method     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  57
                     4.5   Galerkin Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    59
                 5 Finite Element Method                                                                         65
                     5.1   Finite Element Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . .     65
                           5.1.1   Steps in FEM    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  65
                           5.1.2   Selection of Elements . . . . . . . . . . . . . . . . . . . . . . . . . . .    66
                           5.1.3   One-dimensional Linear Element . . . . . . . . . . . . . . . . . . . . . .     67
                           5.1.4   One-dimensional Quadratic Element . . . . . . . . . . . . . . . . . . . .      70
                     5.2   Two-dimensional Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     71
                           5.2.1   Linear Triangular Element . . . . . . . . . . . . . . . . . . . . . . . . .    72
                           5.2.2   Bilinear Rectangular Element    . . . . . . . . . . . . . . . . . . . . . . .  73
                     5.3   Finite Element Equations    . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  74
The words contained in this file might help you see if this file matches what you are looking for:

...Finite element method abdusamada salih department of aerospace engineering indian institute space science and technology thiruvananthapuram india iist ac in ii contents introduction dierence direct approach variational weighted residual to linear spring system solution equations steady sate heat conduction problem calculus variations functionals first variation the fundamental maxima minima simplest essential natural boundary conditions other forms euler lagrange equation special cases advanced problems with high order derivatives several independent variables application el minimal path shortest distance brachistochrone deection beam formulation iii construction from pdes rayleigh ritz methods point collocation subdomain least square galerkin steps fem selection elements one dimensional quadratic two triangular bilinear rectangular...

no reviews yet
Please Login to review.