148x Filetype PDF File size 0.62 MB Source: www.ee.iitm.ac.in
. Circuit Analysis Using Fourier and Laplace Transforms ...... EE2015: Electrical Circuits and Networks Nagendra Krishnapura https://www.ee.iitm.ac.in/∼nagendra/ Department of Electrical Engineering Indian Institute of Technology, Madras Chennai, 600036, India July-November 2017 . . . . . . . . . . . . . . . . . . . . .... ... ... .... ... ... ... .... ... ... ... .... ... ... ... .... ... .... ... ... . . . . . . . . . . . . . . . . . . . . Nagendra Krishnapura https://www.ee.iitm.ac.in/∼nagendra/ Circuit Analysis Using Fourier and Laplace Transforms .. Circuit Analysis Using Fourier and Laplace Transforms Basedon exp(st) being an eigenvector of linear systems Steady-state response to exp(st) is H(s)exp(st) where H(s) is some scaling factor Signals being representable as a sum(integral) of exponentials exp(st) . . . . . . . . . . . . . . . . . . . . .... ... ... .... ... ... ... .... ... ... ... .... ... ... ... .... ... .... ... ... . . . . . . . . . . . . . . . . . . . . Nagendra Krishnapura https://www.ee.iitm.ac.in/∼nagendra/ Circuit Analysis Using Fourier and Laplace Transforms .. Fourier series Periodic x(t) can be represented as sums of complex exponentials x(t) periodic with period T0 Fundamental (radian) frequency ω = 2π/T 0 0 ∞ x(t) = ∑ a exp(jkω t) k 0 k=−∞ x(t) as a weighted sum of orthogonal basis vectors exp(jkω0t) Fundamental frequency ω0 and its harmonics ak: Strength of kth harmonic Coefficients ak can be derived using the relationship ∫ T a = 1 0 x(t)exp(−jkω t)dt k T 0 0 0 “Inner product” of x(t) with exp(jkω0t) . . . . . . . . . . . . . . . . . . . . .... ... ... .... ... ... ... .... ... ... ... .... ... ... ... .... ... .... ... ... . . . . . . . . . . . . . . . . . . . . Nagendra Krishnapura https://www.ee.iitm.ac.in/∼nagendra/ Circuit Analysis Using Fourier and Laplace Transforms .. Fourier series Alternative form ∞ x(t) = a +∑b cos(kω t)+c sin(kω t) 0 k 0 k 0 k=1 Coefficients b and c can be derived using the relationship k k b = 2 ∫ T0 x(t)cos(kω t)dt k T 0 0 0 c = 2 ∫ T0 x(t)sin(kω t)dt k T 0 0 0 Another alternative form ∞ x(t) = a +∑d cos(kω t +ϕ ) 0 k 0 k k=1 Coefficients b and c can be derived using the relationship k k d = √b2+c2 k k k (c ) −1 k ϕ = −tan k b k . . . . . . . . . . . . . . . . . . . . .... ... ... .... ... ... ... .... ... ... ... .... ... ... ... .... ... .... ... ... . . . . . . . . . . . . . . . . . . . . Nagendra Krishnapura https://www.ee.iitm.ac.in/∼nagendra/ Circuit Analysis Using Fourier and Laplace Transforms
no reviews yet
Please Login to review.