jagomart
digital resources
picture1_Solving Inequalities Pdf 176519 | 7 Solving Linear Inequalities


 218x       Filetype PDF       File size 0.09 MB       Source: www.csun.edu


File: Solving Inequalities Pdf 176519 | 7 Solving Linear Inequalities
learning objectives 9 7 solving linear inequalities 1 graph inequalities on a number line 2 use the addition property of inequality to solve inequalities 3 use the multiplication property of ...

icon picture PDF Filetype PDF | Posted on 28 Jan 2023 | 2 years ago
Partial capture of text on file.
                                                                                   
               Learning Objectives:                         9.7   Solving Linear Inequalities 
                    1.  Graph inequalities on a number line. 
                    2.  Use the addition property of inequality to solve inequalities. 
                    3.  Use the multiplication property of inequality to solve inequalities. 
                    4.  Use both properties to solve inequalities. 
                    5.  Solve problems modeled by inequalities. 
                    6.  Key Vocabulary:  inequality, <,  < , > , > , addition property of inequality, multiplication property of 
                        inequality, at least, no less than, at most, no more than, is less than, is greater than. 
               A.  Graphing Inequalities on a Number Line 
                
               Inequality—is an algebraic expression that contains <,  < , > , > symbols. 
                
               Example1.  Graph each inequality on a number line. 
                
               1.      x ≥ −5         
                                                                                   -2      02
                                                                   -6     -4                              4       6 
                
                
                
                        3
               2.    − 2 > m          
                                                                                    -2      02
                                                                    -6      -4                              4       6 
                
                
                
                
                
               3.      − 5 < x ≤ 0  
                                                                                    -2      02
                                                                    -6      -4                              4       6 
                
                
                
                
                
                
                
               B.    Solving the Inequalities using the Addition and Multiplication Property of Inequality 
               Properties of Inequalities—Let a, b and c be real numbers, then 
                
               1.    Addition Property: 
                    ™  If ab,  then a+c >b+c. 
               2.    Positive Multiplication Property: (c is positive) 
                     ™  If a  b,  then ac > bc. 
                                                                                                                                                                 
                                                                                                                
            3. Negative Multiplication Property: (c is negative) 
                           ™  If a  bc and If a > b,  then ac < bc. 
                    TIPS:           If multiply or divide by a negative number, the inequality sign change to opposite. 
            
                    Example 2. Solve each inequality.  Graph the solution set.   
                                3
            1. −2x≤9                                                                                                                             -2           02 
                                                                                                                          -6         -4                                              4           6
            
            
            
            
            
            
            
                                    ()
                            −18 y−2 ≥−21y+24
            2.                                                          
            
                                                                                                                                                      -2           0 2 
                                                                                                                              -6          -4                                              4           6
            
            
            
             
            
            
            
            
                               8                    1
                                   ()()
                    3.       21 x + 2 > 7 x +3   
                                                                                                                                                     -2          0 2 
                                                                                                                             -6          -4                                             4           6
            
            
            
            
            
            
            
            
            
            
            
            
            
            
           
                                                                                                                                                                                                                                           
                                                                        
            C.     Solving Applications Involving Inequalities 
             Key words: 
             Is less than    means  <   At most    means                                                 ≤  
             Is greater than             means          >             At least           means         ≥ 
             No more than                 means         ≤   Not equal to   means  ≠  
              Is less than or equal to   means          ≤             Is greater than or equal to      means          ≥ 
             Example 2.     Solve the following. 
              
             1.  Eight more than twice a number is less than negative twelve. Find all numbers that make this 
                 statement true. 
                      
                      
                      
                      
                      
                      
                      
                      
                      
                      
                      
                      
                      
                      
                      
              2.    One side of a triangle is six times as long as another side, and the third side is 8 inches long.  If 
                    the perimeter can be no more than 106 inches, find the maximum lengths of the other two sides.  
              
              
              
              
              
              
              
              
              
              
              
              
              
              
              
              
              
              
                   
                   
                   
                                                                                                                                            
The words contained in this file might help you see if this file matches what you are looking for:

...Learning objectives solving linear inequalities graph on a number line use the addition property of inequality to solve multiplication both properties problems modeled by key vocabulary at least no less than most more is greater graphing an algebraic expression that contains symbols example each x m b using and let c be real numbers then if ab positive ac bc negative tips multiply or divide sign change opposite solution set y applications involving words means not equal following eight twice twelve find all make this statement true one side triangle six times as long another third inches perimeter can maximum lengths other two sides...

no reviews yet
Please Login to review.