134x Filetype PDF File size 0.69 MB Source: homepages.warwick.ac.uk
MA136 Introduction to Abstract Algebra SamirSiksek MathematicsInstitute UniversityofWarwick Contents ChapterI. Prologue 1 I.1. WhoAmI? 1 I.2. AJollyGoodRead! 1 I.3. Proofs 2 I.4. AcknowledgementsandCorrections 2 ChapterII. AlgebraicReorientation 3 II.1. Sets 3 II.2. BinaryOperations 4 II.3. VectorOperations 5 II.4. OperationsonPolynomials 5 II.5. CompositionofFunctions 6 II.6. CompositionTables 7 II.7. CommutativityandAssociativity 7 II.8. WherearetheProofs? 9 II.9. TheQuaternionicNumberSystem(donotread) 10 ChapterIII. Matrices—ReadOnYourOwn 13 III.1. WhatareMatrices? 13 III.2. MatrixOperations 14 III.3. Wheredomatricescomefrom? 16 III.4. Howtothinkaboutmatrices? 17 III.5. WhyColumnVectors? 19 III.6. Multiplicative Identity and Multiplicative Inverse 20 III.7. Rotations 26 ChapterIV. Groups 27 IV.1. TheDefinitionofaGroup 27 IV.2. First Examples(andNon-Examples) 27 IV.3. AbelianGroups 29 IV.4. SymmetriesofaSquare 30 ChapterV. FirstTheorems 35 V.1. GettingRelaxedaboutNotation 36 V.2. AdditiveNotation 38 ChapterVI. MoreExamplesofGroups 39 VI.1. MatrixGroupsI 39 VI.2. CongruenceClasses 40 i ii CONTENTS ChapterVII. OrdersandLagrange’sTheorem 43 VII.1. TheOrderofanElement 43 VII.2. Lagrange’sTheorem—Version1 46 ChapterVIII. Subgroups 47 VIII.1. WhatWereTheyAgain? 47 VIII.2. CriterionforaSubgroup 47 VIII.3. RootsofUnity 55 VIII.4. MatrixGroupsII 56 VIII.5. Differential Equations 57 VIII.6. Non-TrivialandProperSubgroups 58 VIII.7. Lagrange’sTheorem—Version2 59 ChapterIX. CyclicGroupsandCyclicSubgroups 61 IX.1. LagrangeRevisited 64 IX.2. SubgroupsofZ 65 ChapterX. Isomorphisms 67 ChapterXI. Cosets 69 XI.1. GeometricExamples 70 XI.2. SolvingEquations 72 XI.3. Index 74 XI.4. TheFirstInnermostSecretofCosets 74 XI.5. TheSecondInnermostSecretofCosets 75 XI.6. LagrangeSuper-Strength 76 ChapterXII. QuotientGroups 79 XII.1. CongruencesModuloSubgroups 79 XII.2. CongruenceClassesandCosets 81 XII.3. R/Z 82 XII.4. R2/Z2 83 XII.5. R/Q 84 XII.6. Well-DefinedandProofs 84 ChapterXIII. SymmetricGroups 87 XIII.1. Motivation 87 XIII.2. Injections, Surjections and Bijections 88 XIII.3. TheSymmetricGroup 91 XIII.4. Sn 91 XIII.5. ANiceApplicationofLagrange’sTheorem 94 XIII.6. CycleNotation 95 XIII.7. PermutationsandTranspositions 99 XIII.8. EvenandOddPermutations 100 ChapterXIV. Rings 107 XIV.1. Definition 107 XIV.2. Examples 108 CONTENTS iii XIV.3. Subrings 110 XIV.4. TheUnitGroupofaRing 112 XIV.5. TheUnitGroupoftheGaussianIntegers 115 ChapterXV. Fields 119 ChapterXVI. CongruencesRevisited 121 XVI.1. UnitsinZ/mZ 121 XVI.2. Fermat’sLittleTheorem 122 XVI.3. Euler’s Theorem 123 XVI.4. Vale Dicere 124
no reviews yet
Please Login to review.