jagomart
digital resources
picture1_Matrix Pdf 175239 | Algebra I Cwiczenia 2015


 236x       Filetype PDF       File size 1.09 MB       Source: etacar.put.poznan.pl


File: Matrix Pdf 175239 | Algebra I Cwiczenia 2015
math 2 linear algebra problems solutions and tips fortheelectronicsandtelecommunicationstudents chosen selected and prepared by andrzej mackiewicz technical university of poznan 2 contents 1 complex numbers exercises 7 2 systems of ...

icon picture PDF Filetype PDF | Posted on 28 Jan 2023 | 2 years ago
Partial capture of text on file.
                             Math 2: Linear Algebra
                           Problems, Solutions and Tips
                   FORTHEELECTRONICSANDTELECOMMUNICATIONSTUDENTS
                             Chosen, selected and prepared by:
                                  Andrzej Mackiewicz
                                          ´
                              Technical University of Poznan
                                                  ´
            2
                     Contents
                     1 Complex Numbers (Exercises)                                  7
                     2 Systems of Linear Equations (Exercises)                     17
                        2.1 PracticeProblems......................... 17
                     3 Row Reduction and Echelon Forms (Exercises)                 23
                        3.1 Practiceproblems.......................... 23
                        3.2 SolvingSeveralSystemsSimultaneously ............. 26
                     4 Vector equations (Exercises)                                31
                        4.1 Practiceproblems.......................... 31
                        4.2 Exercises .............................. 35
                     5 The Matrix Equation Ax=b (Exercises)                        39
                        5.1 PracticeProblems ......................... 39
                        5.2 Exercises .............................. 43
                     6  Solutions Sets of Linear Systems (Exercises)               47
                        6.1 PracticeProblems ......................... 47
                        6.2 Exercises .............................. 52
                     7 Linear Independence (Exercises)                             55
                        7.1 PracticeProblems ......................... 55
                        7.2 Exercises .............................. 58
                     8 Introduction to Linear Transformations (Exercises)          61
                        8.1 PracticeProblems ......................... 61
                        8.2 Exercises .............................. 66
                     9 The Matrix of a Linear Transformation (Exercises)           69
                        9.1 PracticeProblems ......................... 69
                        9.2 Exercises .............................. 72
                     10 Matrix Operations (Exercises)                              73
                          4Contents
                              10.1 Diagonal Matrices . . . . . . . . . . . . . . . . . . . . . . . . .   73
                              10.2 Matrix addition and scalar multiplication . . . . . . . . . . . .     73
                              10.3Matrixmultiplication........................ 74
                              10.4Whydoitthisway......................... 78
                              10.5Matrixalgebra ........................... 79
                              10.6Exercises .............................. 83
                          11 The Inverse of a Matrix (Exercises)                                         87
                              11.1PracticeProblems ......................... 87
                                    11.1.1Propertiesoftheinverse.................. 90
                                    11.1.2 Inverses and Powers of Diagonal Matrices . . . . . . . .      92
                                                                        −1
                                    11.1.3 An Algorithm for finding         ............... 92
                              11.2Exercises .............................. 94
                          12 Characterizations of Invertible Matrices (Exercises)                        97
                              12.1PracticeProblems ......................... 97
                              12.2Exercises .............................. 99
                          13 Introduction to Determinants (Exercises)                                  105
                              13.1PracticeProblems .........................105
                              13.2ApplicationtoEngineering ....................109
                              13.3Exercises ..............................110
                          14 Eigenvectors and Eigenvalues (Exercises)                                  113
                              14.1PracticeProblems .........................113
                              14.2Exercises ..............................115
                          15 The Characteristic Equation (Exercises)                                   117
                              15.1PracticeProblems .........................117
                              15.2Exercises ..............................119
                              Bibliography                                                             123
The words contained in this file might help you see if this file matches what you are looking for:

...Math linear algebra problems solutions and tips fortheelectronicsandtelecommunicationstudents chosen selected prepared by andrzej mackiewicz technical university of poznan contents complex numbers exercises systems equations practiceproblems row reduction echelon forms solvingseveralsystemssimultaneously vector the matrix equation ax b sets independence introduction to transformations a transformation operations diagonal matrices addition scalar multiplication matrixmultiplication whydoitthisway matrixalgebra inverse propertiesoftheinverse inverses powers an algorithm for nding characterizations invertible determinants applicationtoengineering eigenvectors eigenvalues characteristic bibliography...

no reviews yet
Please Login to review.