287x Filetype PDF File size 0.19 MB Source: users.physics.ox.ac.uk
LECTURE8:
BASICMATRIXALGEBRA
Prof. N. Harnew
University of Oxford
MT2012
1
Outline: 8. BASIC MATRIX ALGEBRA
8.1 Addition of matrices
8.1.1 Properties and an example
8.2 Multiplication by a scalar
8.2.1 Example
8.3 Multiplication of matrices
8.3.1 Example 1
8.3.2 Example 2
8.4 Properties of matrix multiplication
8.4.1 Proof of A(BC) = (AB)C
2
8.1 Addition of matrices
◮ Matrix summation follows the properties of linear algebra
C=A+B
Hence C =(A+B) =A +B
ij ij ij ij
◮ Writing this out:
A A · · · A B B · · · B
11 12 1n 11 12 1n
A A · · · A B B · · · B
C=A+B= 21 22 2n + 21 22 2n
··· · · · · · · · · · ··· · · · · · · · · ·
A A · · · A B B · · · B
m1 m2 mn m1 m2 mn
(1)
A11+B11 A12 +B12 · · · A1n +B1n
= A21+B21 A22 +B21 · · · A2n +B2n (2)
· · · · · · · · · · · ·
Am1 +Bm1 Am2 +Bm1 · · · Amn +Bmn
◮ For this to have any meaning, both matrices must have the same
dimensions (in this case m × n).
3
8.1.1 Properties and an example
◮ It follows obviously (and also from the rules of linear
operators) that
C=A+B=B+A(commutative).
◮ The difference of two matrices follows in an obvious way:
C=A−BhaselementsC =A −B .
ij ij ij
Example
C=A+B= 1 2 3 + 7 8 9 = 8 10 12
4 5 6 −2 −1 0 2 4 6(3)
4
no reviews yet
Please Login to review.