jagomart
digital resources
picture1_Calculus Pdf Download 172497 | Outline Calculus3 Part2


 231x       Filetype PDF       File size 0.34 MB       Source: www.thepoweroftwo.courses


File: Calculus Pdf Download 172497 | Outline Calculus3 Part2
1 calculus 3 multivariable calculus part 2 of 2 towards and through the vector elds hania uscka wehlou ashort table of contents c4 multiple integrals s1 introduction to the course ...

icon picture PDF Filetype PDF | Posted on 27 Jan 2023 | 2 years ago
Partial capture of text on file.
                                                                                         1
                       Calculus 3 / Multivariable Calculus , Part 2 of 2
                                           Towards and through the vector fields
                                                      Hania Uscka-Wehlou
          Ashort table of contents
           C4 Multiple integrals
                 S1 Introduction to the course
                 S2 Repetition (Riemann integrals, sets in the plane, curves)
                 S3 Double integrals
                 S4 Change of variables in double integrals
                 S5 Improper integrals
                 S6 Triple integrals
                 S7 Change of variables in triple integrals
                 S8 Applications of multiple integrals.
           C5 Vector fields
                 S9 Vector fields
                S10 Conservative vector fields
                S11 Line integrals of functions
                S12 Line integrals of vector fields
                S13 Surfaces
                S14 Surface integrals
                S15 Oriented surfaces and flux integrals.
           C6 Vector calculus
                S16 Gradient, divergence and curl
                S17 Green’s theorem in the plane
                S18 Gauss’ theorem (Divergence Theorem) in 3-space
                S19 Stokes’ theorem
                S20 Wrap-up Multivariable calculus / Calculus 3, Part 2 of 2.
            1Recorded February–March 2021. Published on www.udemy.com on 2021-03-XX.
          An extremely detailed table of contents; the videos (titles in green) are numbered
          In blue: problems solved on an iPad (the solving process presented for the students; active problem solving)
          In red: solved problems demonstrated during a presentation (a walk-through; passive problem solving)
          In magenta: additional problems solved in written articles (added as resources).
           C4 Multiple integrals
                (Chapter214)
                 S1 Introduction to the course
                      1 Introduction to the course. Extra material: this list with all the movies and problems.
                 S2 Repetition (Riemann integrals, sets in the plane, curves)
                      2 Riemann integrals: repetition part 1 (definition, notation, and terminology).
                      3 Riemann integrals: repetition part 2 (integrable and non-integrable functions).
                      4 Riemann integrals: repetition part 3 (properties and applications).
                      5 Riemann integrals: repetition part 4 (integration by inspection).
                                                             2       6            1 √
                                                            R        R            R        2
                         Method 1: by area; three examples: −4 6dx, −2 xdx and −1     1−x dx.
                                                                 4                1.6
                         Method 2: odd functions; two examples: R sinxdx and      R (x−5x3+2x5)dx.
                                                                −4              −1.6
                      6 Riemann integrals: repetition part 5 (computations).
                         Extra material: an article with some integrals which will be particularly important in double and triple
                         integrals (trigonometrical functions).
                      7 Curves: repetition part 1 (general).
                      8 Curves: repetition part 2 (arc length).
                      9 Sets in the plane: repetition.
                 S3 Double integrals
                     You will learn: compute double integrals by iteration of single integrals.
                     10 Notation and applications.
                     11 Three ways of defining APR (axis-parallel rectangles).
                     12 Definition of double integrals on APR.
                     13 Definition of double integrals on compact domains.
                     14 Multiple integrals, generally.
                     15 Properties of double integrals.
                     16 Integration by inspection 1.        RR        RR
                         Example 1: Estimate by inspection: R dxdy, R 5dxdy where R = {(x,y); −1 6 x 6 3, −4 6 y 6 1}.
             2Chapter numbers in Robert A. Adams, Christopher Essex: Calculus, a complete course. 8th or 9th edition.
                                                                       RR    p 2      2     2
                            Example 2: Estimate by inspection: 2        2  2   a −x −y dA.
                                                                   x +y 6a
                            Example3:Estimatebyinspection:RR(1−x−y)dAwhereT isthetrianglewithverticesin(0,0),(1,0),(0,1).
                                                                   T
                        17 Functions odd w.r.t. x and odd w.r.t. y.
                        18 Integration by inspection 2.
                        19 Integration by inspection, Problem 1.                       RR
                            Problem 1: Let D = {(x,y); |x|+|y| 6 1}. Estimate            (x3cosy2 +3siny−π)dA.
                                                                                       D
                            Extra material: notes with solved problem 1.
                        20 Integration by inspection, Problem 2.                    √                     RR
                            Problem 2: Let D = {(x,y); −2 6 x 6 2, 0 6 y 6            4−x2}. Estimate        (x+3)dA.
                                                                                                          D
                            Extra material: notes with solved problem 2.
                        21 Integration by inspection, Problem 3.
                            Problem 3: Let D denote the parallelogram with vertices in (2,2), (1,−1), (−2,−2), (−1,1). Estimate
                             RR(x+y)dA.
                             D
                            Extra material: notes with solved problem 4.
                        22 Integration by inspection, Problem 4.                        RR
                            Problem 4: Let D = {(x,y); |x|+|y| 6 π}. Show that D sin(x+y)dxdy = 0.
                        23 Integration by iteration, Fubini’s theorem on APR.
                        24 Fubini, Problem 1.       RR
                            Problem 1: Compute         x3y2dA where R = {(x,y); 0 6 x 6 1, 0 6 y 6 2}. Show two methods.
                                                    R
                            Extra material: notes with solved problem 1.
                        25 Fubini, Problem 2.       RR
                            Problem 2: Compute R ycos(xy)dA where R = {(x,y); 0 6 x 6 1, 0 6 y 6 π/2}.
                            Extra material: notes with solved problem 2.
                        26 Fubini, Problem 3.       RR
                                                        x+y
                            Problem 3: Compute R e           dA where R = {(x,y); 0 6 x 6 1, 0 6 y 6 1}.
                            Extra material: notes with solved problem 3.
                        27 A very, very important computational trick.
                            Extra material: notes.
                        28 Fubini, Problem 4.       RR
                                                        xy
                            Problem 4: Compute R e (1+xy)dxdy where R = {(x,y); 0 6 x 6 1, 1 6 y 6 2}.
                            Extra material: notes with solved problem 4.
                        29 Fubini, an example where the order matters.                      RR
                            Let D = {(x,y) ∈ R2 : 1 6 x 6 3,       0 6 y 6 1}. Compute             x   dxdy.
                                                                                               (1+xy)2
                                                                                            D
                        30 x-simple and y-simple domains.
                        31 Fubini’s theorem for x-simple and for y-simple domains.
                            Example: Compute RR(x2 +y2)dxdy where R is a triangle with vertices in (1,1), (1,0), (0,1).
                                                  R
                                                                  RR 2
                            Example: Compute (in two ways) D x ydxdy where D = {(x,y); 0 6 x 6 2, 0 6 y 6 x}.
                        32 Fubini general version, Problem 1.
                            Problem 1: Compute RR 2xydxdy where R is a triangle with vertices in (0,0), (2,−2), (2,4).
                                                    R
                        33 Fubini general version, Problem 2.
                            Problem 2: Compute RR xydxdy where R : x2 6 y 6 x. Show two methods.
                                                    R
                            Extra material: notes with solved problem 2.
                        34 Fubini general version, Problem 3.
                                                    RR x    y                    2
                            Problem 3: Compute R y ·e dxdy where R : x 6 y 6 x.
                            Extra material: notes with solved problem 3.
                        35 Fubini general version, Problem 4.
                            Problem 4: Compute RR        x 2 dxdy where R = {(x,y); x > 0, x2 6 y 6 1}. Show two methods.
                                                       1+y
                                                    R
                            Extra material: notes with solved problem 4.
                        36 Fubini general version, Problem 5.
                            Problem 5: Compute RR x3y2 dxdy where R = {(x,y); x > 0, x2 −y2 > 1, x2 +y2 6 9}.
                                                    R
                            Extra material: notes with solved problem 5.
                        37 Fubini general version, Problem 6.
                                                    1   3        !
                                                    R   R x2
                            Problem 6: Compute            e   dx dy.
                                                    0   3y
                            Extra material: notes with solved problem 6.
                        38 Fubini general version, Problem 7.
                            Problem 7: Compute RR ey3 dxdy where R : 0 6 x 6 1, √x 6 y 6 1.
                                                    R
                            Extra material: notes with solved problem 7.
                        39 Fubini general version, Problem 8.
                            Problem 8: Compute RR lnxdxdy where R is the set in the first quadrant, between the line 2x + 2y = 5
                                                    R
                            and the hyperbola xy = 1.
                            Extra material: notes with solved problem 8.
                            Extra material: an article with more solved problems on double integrals.
                              ⋆ Extra problem 1: Let f(x,y) = xy and
                                                                       2                                  4
                                                    D={(x,y)∈R | −16x61, 06y61+x , 06y+x}.
                                Compute the double integral of function f over the domain D. Sketch D.
                              ⋆ Extra problem 2: Given a rectangular box with the bottom D : −1 6 x 6 1, −2 6 y 6 2 in the
                                plane z = 0 and the top in the plane z = 7. We cut off the upper part of the box with the surface of
                                the paraboloid z = 6−x2 −y2. Compute the volume of the solid obtained in this way.
                              ⋆ Extra problem 3: Compute the double integral
                                                                                  ZZ     2
                                                                                      ex dxdy
                                                                                  D
                                where D is the triangle with vertices in (0,0), (1,1) and (1,−1).
The words contained in this file might help you see if this file matches what you are looking for:

...Calculus multivariable part of towards and through the vector elds hania uscka wehlou ashort table contents c multiple integrals s introduction to course repetition riemann sets in plane curves double change variables improper triple applications conservative line functions surfaces surface oriented ux gradient divergence curl green theorem gauss space stokes wrap up recorded february march published on www udemy com xx an extremely detailed videos titles are numbered blue problems solved ipad solving process presented for students active problem red demonstrated during a presentation walk passive magenta additional written articles added as resources chapter extra material this list with all movies denition notation terminology integrable non properties integration by inspection r method area three examples dx xdx x odd two sinxdx computations article some which will be particularly important trigonometrical general arc length you learn compute iteration single ways dening apr axis pa...

no reviews yet
Please Login to review.