158x Filetype PDF File size 2.97 MB Source: college.cengage.com
332522CB_1200_AN.qxd 4/26/06 6:23 PM Page 1 Precalculus with Limits, Answers to Section 12.1 1 Chapter 12 (d) 5 Section 12.1 (page 860) Vocabulary Check (page 860) 0 5 0 1. limit 2. oscillates 3. direct substitution 3. 1. (a) x 1.9 1.99 1.999 2 2.001 2.01 2.1 x fx 13.5 13.95 13.995 14 14.005 14.05 14.5 14; Yes 2(12 x) 4. x 1.9 1.99 1.999 2 2(12 x) fx 1.090 1.010 1.001 1 (b) V lwh 212 x 212 x x x 2.001 2.01 2.1 2 4x12 x fx 0.999 0.990 0.890 (c) x 3 3.5 3.9 4 ; Yes 1 V 972 1011.5 1023.5 1024 5. x 2.9 2.99 2.999 3 x 4.1 4.5 5 f x 0.1695 0.1669 0.1667 Error V 1023.5 1012.5 980 x 3.001 3.01 3.1 lim V 1024 f x 0.1666 0.1664 0.1639 x→4 (d) 1200 1; No 6 6. x 1.1 1.01 1.001 1 0 12 f x 0.3226 0.3322 0.3332 Error 0 2. (a) x 0.999 0.99 0.9 y 18 f x 0.3334 0.3344 0.3448 x 1; No 3 (b) A 1bh 7. x 0.9 0.99 0.999 1 All rights reserved.2 . 1xy 2 f x 0.2564 0.2506 0.2501 Error 1 2 2x 18 x (c) x 2 2.5 2.9 3 x 1.001 1.01 1.1 flin Company A 3.7417 4.2848 4.4903 4.5 f x 0.2499 0.2494 0.2439 1; 3 x 3.1 3.5 4 4 Houghton Mif A 4.4897 4.1964 2.8284 −5 4 lim A 4.5 Copyright © x→3 −3 332522CB_1200_AN.qxd 4/26/06 6:23 PM Page 2 Precalculus with Limits, Answers to Section 12.1 2 (Continued) 12. x 1.9 1.99 1.999 2 8. x 2.1 2.01 2.001 2 f x 0.0641 0.0627 0.0625 Error f x 1.1111 1.0101 1.001 Error x 2.001 2.01 2.1 x 1.999 1.99 1.9 f x 0.0625 0.0623 0.061 f x 0.999 0.9901 0.9091 1; 2 1; 3 16 −3 3 −7 2 −2 −3 13. 9. x 0.1 0.01 0.001 0 x 0.1 0.01 0.001 0 f x 0.2247 0.2237 0.2236 Error f x 0.9983 0.99998 0.9999998 Error x 0.001 0.01 0.1 x 0.001 0.01 0.1 f x 0.2236 0.2235 0.2225 f x 0.9999998 0.99998 0.9983 0.2236; 0.8 1; 2 −3 3 −3 3 −0.8 −2 10. x 3.1 3.01 3.001 3 14. x 0.1 0.01 0.001 0 f x 0.2485 0.2498 0.25 Error f x 0.050 0.005 0.0005 Error x 2.999 2.99 2.9 x 0.001 0.01 0.1 f x 0.25 0.2502 0.2516 f x 0.0005 0.005 0.05 1; 2 0; 2 4 −4 2 −3 3 −2 −2 All rights reserved. . 11. 15. y 16. y x 4.1 4.01 4.001 4 8 3 f x 0.4762 0.4975 0.4998 Error 2 6 flin Company 4 x x 3.999 3.99 3.9 21 123456 1 f x 0.5003 0.5025 0.5263 2 2 x 3 1 −2 2468 4 Houghton Mif2; 3 −2 5 −6 3 5 Limit does not exist. Copyright © 17. 13 18. 12 19. Does not exist. Answers will vary. −3 20. Does not exist. Answers will vary. 332522CB_1200_AN.qxd 4/26/06 6:23 PM Page 3 Precalculus with Limits, Answers to Section 12.1 3 (Continued) 59. (a) and (b) Answers will vary. 21. Does not exist. Answers will vary. 22. 1 60. Answers will vary. 23. 3 24. 3 61. (a) No. The function may approach different values from the right and left of 2. For example, 0, x < 2 −3 3 −3 3 f x 4, x 2 −1 −1 6, x > 2 implies but No. Answers will vary. Yes f 2 4, lim fx 4. x→2 25. 2 26. 2 (b) No. The function may approach 4 as x approaches 2, but the function could be undefined at x 2. For −3 3 −3 3 example, in the function fx 4 sinx 2, the limit x 2 is 4 as x approaches 2, but f2 is not defined. −2 −2 x- No. Answers will vary. Yes 62. As a function’s value approaches 5 from both the right and left sides, its corresponding output values approach 12. 27. 3 28. 3 63. (a) 9 −1 8 −3 6 −3 12 −3 −3 −1 No. Answers will vary. No. Answers will vary. 6 29. 3 30. 6 (b) Domain: all real numbers x such that x ≥ 0 (c) Domain: all real numbers x such that x ≥ 0 except −1 8 −6 12 x 9 (d) It may not be clear from a graph that a function is not −3 −6 defined at a single point. Examining a function graph- Yes will vary. No. Answers ically and algebraically ensures that you will find all points at which the function is not defined. 31. 4 32. 4 64. (a) 4 −6 6 −4 8 −6 6 −4 −4 −4 Yes Yes 1 33. (a) (b) 9 (c) 1 (d) 6 All rights reserved.12 2 3 (b) Domain: all real numbers x except x 3 . 34. (a) 9 (b) 60 (c) 1 (d) 5 (c) Domain: all real numbers x except x ±3 2 5 (d) It may not be clear from a graph that a function is not 35. (a) 8 (b) 3 (c) 3 (d) 61 defined at a single point. Examining a function graph- flin Company 8 8 36. (a) 2 (b) 0 (c) 0 (d) 2 37. 15 ically and algebraically ensures that you will find all 38. 6 39. 7 40. 9 41. 3 42. 2 points at which the function is not defined. 43. 9 44. 1 45. 7 46. 10 47. 1 65. 1, x 5 66. x 9, x 9 10 9 13 3 3 Houghton Mif48. 2 49. 3550. 3 51. e3 20.09 52. 1 5x 4 1 x 6 3 4 67. , x 68. , x 6 5x 2 3 x 1 53. 0 54. 0 55. 6 56. 3 57. True 69. x2 3x 9, x 3 70. x2 2x 4, x 2 Copyright ©58. True, provided the individual limits exist. x 2 x 2 332522CB_1200_AN.qxd 4/26/06 6:23 PM Page 4 Precalculus with Limits, Answers to Section 12.1 4 (Continued) 73. (a) 74. (a) z (0, −4, 0) 71. (a) 72. (a) z −4 z z 4 −4 −2 −4 −2 (3, −3, 0) 2 −2 2 8 8 −2 4 −2 2 2 4 (3, 2, 8) 6 4 2 x y (1, 0, 3) −2 4 −4 (3, 2, 7) (5, 2, 6) 4 x y −6 −4 −4 −4 −4 −4 −8 −2 −2 −6 −2 (0, 5, −5) (2, 0, −9) 2 4 4 6 4 4 x y x y (b) (b) 7 2 101 15 9 (c) 3, 1, 5 (c) 1, 2, 9 (b) 1 (c) (b) (c) 2 2 2 3, 2, 2 29 3, 1, 2 All rights reserved. . flin Company Houghton Mif Copyright ©
no reviews yet
Please Login to review.