143x Filetype PDF File size 0.98 MB Source: www.math.uchicago.edu
Stochastic Calculus: An Introduction with Applications Gregory F. Lawler ©2014Gregory F. Lawler All rights reserved ii Contents 1 Martingales in discrete time 3 1.1 Conditional expectation . . . . . . . . . . . . . . . . . . . . . 3 1.2 Martingales . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.3 Optional sampling theorem . . . . . . . . . . . . . . . . . . . . 14 1.4 Martingale convergence theorem . . . . . . . . . . . . . . . . . 19 1.5 Square integrable martingales . . . . . . . . . . . . . . . . . . 24 1.6 Integrals with respect to random walk . . . . . . . . . . . . . 26 1.7 Amaximal inequality . . . . . . . . . . . . . . . . . . . . . . . 27 1.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2 Brownian motion 35 2.1 Limits of sums of independent variables . . . . . . . . . . . . . 35 2.2 Multivariate normal distribution . . . . . . . . . . . . . . . . . 38 2.3 Limits of random walks . . . . . . . . . . . . . . . . . . . . . . 42 2.4 Brownian motion . . . . . . . . . . . . . . . . . . . . . . . . . 43 2.5 Construction of Brownian motion . . . . . . . . . . . . . . . . 46 2.6 Understanding Brownian motion . . . . . . . . . . . . . . . . . 51 2.6.1 Brownian motion as a continuous martingale . . . . . . 54 2.6.2 Brownian motion as a Markov process . . . . . . . . . 56 2.6.3 Brownian motion as a Gaussian process . . . . . . . . . 57 2.6.4 Brownian motion as a self-similar process . . . . . . . . 58 2.7 Computations for Brownian motion . . . . . . . . . . . . . . . 58 2.8 Quadratic variation . . . . . . . . . . . . . . . . . . . . . . . . 63 2.9 Multidimensional Brownian motion . . . . . . . . . . . . . . . 66 2.10 Heat equation and generator . . . . . . . . . . . . . . . . . . . 68 2.10.1 One dimension . . . . . . . . . . . . . . . . . . . . . . 68 2.10.2 Expected value at a future time . . . . . . . . . . . . . 74 2.11 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 iii iv CONTENTS 3 Stochastic integration 83 3.1 What is stochastic calculus? . . . . . . . . . . . . . . . . . . . 83 3.2 Stochastic integral . . . . . . . . . . . . . . . . . . . . . . . . 85 3.2.1 Review of Riemann integration . . . . . . . . . . . . . 85 3.2.2 Integration of simple processes . . . . . . . . . . . . . . 86 3.2.3 Integration of continuous processes . . . . . . . . . . . 89 3.3 Itˆo’s formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 3.4 More versions of Itˆo’s formula . . . . . . . . . . . . . . . . . . 105 3.5 Diffusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 3.6 Covariation and the product rule . . . . . . . . . . . . . . . . 116 3.7 Several Brownian motions . . . . . . . . . . . . . . . . . . . . 117 3.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 4 More stochastic calculus 125 4.1 Martingales and local martingales . . . . . . . . . . . . . . . . 125 4.2 An example: the Bessel process . . . . . . . . . . . . . . . . . 131 4.3 Feynman-Kac formula . . . . . . . . . . . . . . . . . . . . . . 133 4.4 Binomial approximations . . . . . . . . . . . . . . . . . . . . . 137 4.5 Continuous martingales . . . . . . . . . . . . . . . . . . . . . . 141 4.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 5 Change of measure and Girsanov theorem 145 5.1 Absolutely continuous measures . . . . . . . . . . . . . . . . . 145 5.2 Giving drift to a Brownian motion . . . . . . . . . . . . . . . 150 5.3 Girsanov theorem . . . . . . . . . . . . . . . . . . . . . . . . . 153 5.4 Black-Scholes formula . . . . . . . . . . . . . . . . . . . . . . . 162 5.5 Martingale approach to Black-Scholes equation . . . . . . . . . 166 5.6 Martingale approach to pricing . . . . . . . . . . . . . . . . . 169 5.7 Martingale representation theorem . . . . . . . . . . . . . . . 178 5.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 6 Jump processes 185 6.1 L´evy processes . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 6.2 Poisson process . . . . . . . . . . . . . . . . . . . . . . . . . . 188 6.3 Compound Poisson process . . . . . . . . . . . . . . . . . . . . 192 6.4 Integration with respect to compound Poisson processes . . . . 200 6.5 Change of measure . . . . . . . . . . . . . . . . . . . . . . . . 205 6.6 Generalized Poisson processes I . . . . . . . . . . . . . . . . . 206
no reviews yet
Please Login to review.