jagomart
digital resources
picture1_Calculus Pdf 170494 | Finbook


 143x       Filetype PDF       File size 0.98 MB       Source: www.math.uchicago.edu


File: Calculus Pdf 170494 | Finbook
stochastic calculus an introduction with applications gregory f lawler 2014gregory f lawler all rights reserved ii contents 1 martingales in discrete time 3 1 1 conditional expectation 3 1 2 ...

icon picture PDF Filetype PDF | Posted on 26 Jan 2023 | 2 years ago
Partial capture of text on file.
        Stochastic Calculus: An Introduction with
                 Applications
                Gregory F. Lawler
               ©2014Gregory F. Lawler
                All rights reserved
            ii
                    Contents
                    1 Martingales in discrete time                                                      3
                        1.1   Conditional expectation      . . . . . . . . . . . . . . . . . . . . .    3
                        1.2   Martingales . . . . . . . . . . . . . . . . . . . . . . . . . . . .     10
                        1.3   Optional sampling theorem . . . . . . . . . . . . . . . . . . . .       14
                        1.4   Martingale convergence theorem . . . . . . . . . . . . . . . . .        19
                        1.5   Square integrable martingales . . . . . . . . . . . . . . . . . .       24
                        1.6   Integrals with respect to random walk        . . . . . . . . . . . . .  26
                        1.7   Amaximal inequality . . . . . . . . . . . . . . . . . . . . . . .       27
                        1.8   Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   28
                    2 Brownian motion                                                                 35
                        2.1   Limits of sums of independent variables . . . . . . . . . . . . .       35
                        2.2   Multivariate normal distribution . . . . . . . . . . . . . . . . .      38
                        2.3   Limits of random walks . . . . . . . . . . . . . . . . . . . . . .      42
                        2.4   Brownian motion . . . . . . . . . . . . . . . . . . . . . . . . .       43
                        2.5   Construction of Brownian motion . . . . . . . . . . . . . . . .         46
                        2.6   Understanding Brownian motion . . . . . . . . . . . . . . . . .         51
                              2.6.1   Brownian motion as a continuous martingale . . . . . .          54
                              2.6.2   Brownian motion as a Markov process . . . . . . . . . 56
                              2.6.3   Brownian motion as a Gaussian process . . . . . . . . .         57
                              2.6.4   Brownian motion as a self-similar process . . . . . . . .       58
                        2.7   Computations for Brownian motion . . . . . . . . . . . . . . .          58
                        2.8   Quadratic variation . . . . . . . . . . . . . . . . . . . . . . . .     63
                        2.9   Multidimensional Brownian motion . . . . . . . . . . . . . . .          66
                        2.10 Heat equation and generator . . . . . . . . . . . . . . . . . . .        68
                              2.10.1 One dimension . . . . . . . . . . . . . . . . . . . . . .        68
                              2.10.2 Expected value at a future time . . . . . . . . . . . . .        74
                        2.11 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    78
                                                             iii
                              iv                                                                    CONTENTS
                              3 Stochastic integration                                                          83
                                  3.1   What is stochastic calculus? . . . . . . . . . . . . . . . . . . .      83
                                  3.2   Stochastic integral    . . . . . . . . . . . . . . . . . . . . . . . .  85
                                        3.2.1   Review of Riemann integration . . . . . . . . . . . . .         85
                                        3.2.2   Integration of simple processes . . . . . . . . . . . . . .     86
                                        3.2.3   Integration of continuous processes . . . . . . . . . . .       89
                                  3.3   Itˆo’s formula . . . . . . . . . . . . . . . . . . . . . . . . . . . .  99
                                  3.4   More versions of Itˆo’s formula . . . . . . . . . . . . . . . . . . 105
                                  3.5   Diffusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
                                  3.6   Covariation and the product rule       . . . . . . . . . . . . . . . . 116
                                  3.7   Several Brownian motions . . . . . . . . . . . . . . . . . . . . 117
                                  3.8   Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
                              4 More stochastic calculus                                                      125
                                  4.1   Martingales and local martingales . . . . . . . . . . . . . . . . 125
                                  4.2   An example: the Bessel process . . . . . . . . . . . . . . . . . 131
                                  4.3   Feynman-Kac formula . . . . . . . . . . . . . . . . . . . . . . 133
                                  4.4   Binomial approximations . . . . . . . . . . . . . . . . . . . . . 137
                                  4.5   Continuous martingales . . . . . . . . . . . . . . . . . . . . . . 141
                                  4.6   Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
                              5 Change of measure and Girsanov theorem                                        145
                                  5.1   Absolutely continuous measures . . . . . . . . . . . . . . . . . 145
                                  5.2   Giving drift to a Brownian motion        . . . . . . . . . . . . . . . 150
                                  5.3   Girsanov theorem . . . . . . . . . . . . . . . . . . . . . . . . . 153
                                  5.4   Black-Scholes formula . . . . . . . . . . . . . . . . . . . . . . . 162
                                  5.5   Martingale approach to Black-Scholes equation . . . . . . . . . 166
                                  5.6   Martingale approach to pricing       . . . . . . . . . . . . . . . . . 169
                                  5.7   Martingale representation theorem        . . . . . . . . . . . . . . . 178
                                  5.8   Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
                              6 Jump processes                                                                185
                                  6.1   L´evy processes . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
                                  6.2   Poisson process . . . . . . . . . . . . . . . . . . . . . . . . . . 188
                                  6.3   Compound Poisson process . . . . . . . . . . . . . . . . . . . . 192
                                  6.4   Integration with respect to compound Poisson processes . . . . 200
                                  6.5   Change of measure . . . . . . . . . . . . . . . . . . . . . . . . 205
                                  6.6   Generalized Poisson processes I . . . . . . . . . . . . . . . . . 206
The words contained in this file might help you see if this file matches what you are looking for:

...Stochastic calculus an introduction with applications gregory f lawler all rights reserved ii contents martingales in discrete time conditional expectation optional sampling theorem martingale convergence square integrable integrals respect to random walk amaximal inequality exercises brownian motion limits of sums independent variables multivariate normal distribution walks construction understanding as a continuous markov process gaussian self similar computations for quadratic variation multidimensional heat equation and generator one dimension expected value at future iii iv integration what is integral review riemann simple processes it o s formula more versions diusions covariation the product rule several motions local example bessel feynman kac binomial approximations change measure girsanov absolutely measures giving drift black scholes approach pricing representation jump l evy poisson compound generalized i...

no reviews yet
Please Login to review.