151x Filetype PDF File size 1.19 MB Source: www.math.tecnico.ulisboa.pt
Calculus of Variations and Partial Differential Equations Diogo Aguiar Gomes Contents . Introduction 5 1. Finite dimensional optimization problems 9 n 1. Unconstrained minimization in R 10 2. Convexity 16 3. Lagrange multipliers 26 4. Linear programming 30 5. Non-linear optimization with constraints 37 6. Bibliographical notes 48 2. Calculus of variations in one independent variable 49 1. Euler-Lagrange Equations 50 2. Further necessary conditions 57 3. Applications to Riemannian geometry 60 4. Hamiltonian dynamics 75 5. Sufficient conditions 89 6. Symmetries and Noether theorem 105 7. Critical point theory 111 8. Invariant measures 116 9. Non convex problems 118 10. Geometry of Hamiltonian systems 119 11. Perturbation theory 122 12. Bibliographical notes 126 3. Calculus of variations and elliptic equations 127 1. Euler-Lagrange equation 129 2. Further necessary conditions and applications 136 3. Convexity and sufficient conditions 136 4. Direct method in the calculus of variations 136 3 4 CONTENTS 5. Euler-Lagrange equations 145 6. Regularity by energy methods 146 7. H¨older continuity 155 8. Schauder estimates 171 4. Optimal control and viscosity solutions 183 1. Elementary examples and properties 186 2. Dynamic programming principle 188 3. Pontryagin maximum principle 190 4. The Hamilton-Jacobi equation 192 5. Verification theorem 193 6. Existence of optimal controls - bounded control space 195 7. Sub and superdifferentials 197 8. Optimal control in the calculus of variations setting 202 9. Viscosity solutions 214 10. Stationary problems 224 5. Duality theory 231 1. Model problems 231 2. Some informal computations 237 3. Duality 241 4. Generalized Mather problem 244 5. Monge-Kantorowich problem 266 . Bibliography 269 . Index 271
no reviews yet
Please Login to review.