208x Filetype PDF File size 1.32 MB Source: djalil.chafai.net
Introduction to stochastic calculus Rough lecture notes Masterofmathematics UniversitéParis-Dauphine–PSL 2020–2021 Correctedversion CompiledJanuary13,2023 Coursehomepageonhttps://djalil.chafai.net/ ii Suggestedscheduleofthelectures. Werecommendthattheinclassororallecturesdifferfromthelecturenotes,ideallytheyshouldcontain less details and should be focused ontheessentialaspects,thestructure,theculture,andtheintuition. • Lecture1(2x1.5h) Chapter1(Preliminaries) • Lecture2(2x1.5h) Chapter2(Processes,filtrations,stoppingtimes,martingales) • Lecture3(2x1.5h) Chapter3(Brownianmotion) • Lecture4(2x1.5h) Chapter3(Brownianmotion) • Lecture5(2x1.5h) Chapter4(Moreonmartingales) • Lecture6(2x1.5h) Chapter5(ItôstochasticintegralwithrespecttoBM) • Lecture7(2x1.5h) Chapter5(Itôstochasticintegralandsemi-martingales) • Lecture8(2x1.5h) Chapter6(Itôformulaandapplications) • Lecture9(2x1.5h) Chapter6(Itôformulaandapplications) • Lecture10(2x1.5h) Chapter7(Stochasticdifferentialequations) • Lecture11(2x1.5h) Chapter7(Stochasticdifferentialequations) • Lecture12(2x1.5h) Chapter8(Morelinkswithpartialdifferentialequations) • Exam Therearealsoseparateexcercisessessions(séancesdetravauxdirigés). ii/144 iii These are the lecture notes of an introduction course on stochastic calculus, given at Université Paris-Dauphine – PSL, for 1 secondyearmasterstudentsinmathematics .TheprerequisiteisaprobabilitytheorycoursebasedonLebesgueintegral,including conditionalexpectation,gaussianrandomvectors,andstandardnotionsofconvergence. Theinitialversionoftheselecturenotes was based on a course given by Halim Doss, inspired from the book by Nobuyuki Ikeda and Sinzo Watanabe [20]. The current versionisalsoinspiredinpartfromthebooksbyFabriceBaudoin[4]andJean-FrançoisLeGall[31],andbyplentyofothersources. Somebitsaretrulyoriginal. Bewarethattheselecturenotesaredesignedtoconstitutearichwrittenreferenceforthelivecourse. Thelivecourseconcernsonlyastrictsubpartfocusingonintuition,selectedforbeingessentialforunderstandingtheconceptsand techniques. Atthetimeofwriting,herearethemaindifferenceswiththewrittenlecturenotesbyHalimDossbefore2018: • Moreonprobabilitybasics,uniformintegrability,Lebesgue–Stieltjesintegral • Moreonmartingalesandlocalmartingales • Moreonexamplesandapplicationseverywhere • Moreonhistory,intuition,linkwithphysics,programming • PropertiesofBrownianmotion,Dubins–Schwarztheorem,Feynman–Kacformula,Langevinprocesses • Moreonsemi-martingales,stochasticintegral,andItôformula Theselecturenotesdonotcoverseveralimportanttopicsrelatedtostochasticcalculus, suchasfineanalysisofBrownianmotion : regularity, excursions, zeros, recurrence and transcience, etc, random time change, Euler–Maruyama schemes for numerical analysis of stochastic differential equations, applications of stochastic calculus to finance, physics, biology, statistics, stochastic control, and Monte Carlo methods, Malliavin calculus, Stroock–Varadhan support theorems, local times and Tanaka formula, Schilder large deviation principle, additive functionals : law of large numbers, ergodic theorems, central limit theorems, large deviation principles, link with entropy and Poisson equation, Doob H-transforms, Friedlin–Wentzell large deviations principle for perturbation of dynamical systems, Feller branching diffusions, branching Brownian motion, Fisher–Wright diffusion, diffu- sionswithjumps,space/timewhitenoise,Bakry–Émerynon-explosioncriterionandlinkwithPoincaré,logarithmicSobolev,and isoperimetric functional inequalities, diffusions on manifolds, Eyrings-Kramers formula, etc. On the other hand, some topics are consideredintheexams,suchasCox–Ingersoll–RossandBesselprocesses,LévyareaofplanarBrownianmotion,etc. There are many other references on the subject. An accessible introduction are the books by Laurence Craig Evans [16] and byBerntØksendal[49]. ThebooksbyRichardDurrett[13],PhilipProtter[42], andHui-HsiungKuo[28]arealsoaccessible. More advanced references include the books by Michel Métivier [36], Chris Rogers and David Williams [44, 45], Daniel Stroock and Srinivasa Varadhan [47], Ioannis Karatzas and Steven Shreve [24], Daniel Revuz and Marc Yor [43], Jean Jacod [21], Iosif Gikhman andAnatoliSkorokhod[18], andbyClaudeDelacherieandPaul-AndréMeyer[9,10]. Finally, accessible references with exercises includethebookbyFrancisCometsandThierryMeyre[8](inFrench)andPaoloBaldi[3]forinstance. Contributors. • 2018–2022: DjalilChafaï • –2018: HalimDoss Glitcheshunters. • 2021–2022: PaulineAmrouche,FanirianaRakotoEndor,JustinSalez • 2020–2021: OskarBataillon,YiHan,QiaoyuLuo,GabrielMoreira-Nogueira,DiegoAlejandroMurillo Taborda,LyesTifoun,WalidElWahabi • 2019–2020: OscarCosserat,ŁukaszMad˛ ry,AlejandroRosalesOrtiz,ZiyuZhou • 2018–2019: ClémentBerenfeld 1MASEF(Mathématiquespourl’économieetlafinance)andMATH(Mathématiquesappliquéesetthéoriques). iii/144 iv Notation. R+ [0,+∞) BM Brownianmotion O,o Landaunotation iff if and only if a.s. almostsurely u.i. uniformlyintegrable w.r.t. withrespectto 1A indicatorof A x·y or〈x,y〉 x1y1+···+xdyd ifx,y ∈Rd |x| qx2+···+x2 ifx∈Rd 1 d BE Borelσ-algebraofE e exponential d differentialelement i thecomplexnumber(0,1) d,i,j,k,m,n,ℓ integernumbers p,q,r,s,t,u,v,α,β,ε real numbers s ∧t and s∨t min(s,t)andmax(s,t) f is increasing f (y)≥ f (x) if y ≥ x p d k kp L d(Ω,P) X :Ω→R measurablewithE( X ) <∞ R 〈x,y〉H scalar productintheHilbertspaceH 〈M,N〉 anglebracketoflocalmartingalesM,N 〈M〉 〈M,M〉 [M,N] squarebracketoflocalmartignalesM,N [M] [M,M] X ∼µ X haslawµ iv/144
no reviews yet
Please Login to review.