380x Filetype PDF File size 1.32 MB Source: djalil.chafai.net
Introduction to stochastic calculus
Rough lecture notes
Masterofmathematics
UniversitéParis-Dauphine–PSL
2020–2021
Correctedversion
CompiledJanuary13,2023
Coursehomepageonhttps://djalil.chafai.net/
ii
Suggestedscheduleofthelectures.
Werecommendthattheinclassororallecturesdifferfromthelecturenotes,ideallytheyshouldcontain
less details and should be focused ontheessentialaspects,thestructure,theculture,andtheintuition.
• Lecture1(2x1.5h)
Chapter1(Preliminaries)
• Lecture2(2x1.5h)
Chapter2(Processes,filtrations,stoppingtimes,martingales)
• Lecture3(2x1.5h)
Chapter3(Brownianmotion)
• Lecture4(2x1.5h)
Chapter3(Brownianmotion)
• Lecture5(2x1.5h)
Chapter4(Moreonmartingales)
• Lecture6(2x1.5h)
Chapter5(ItôstochasticintegralwithrespecttoBM)
• Lecture7(2x1.5h)
Chapter5(Itôstochasticintegralandsemi-martingales)
• Lecture8(2x1.5h)
Chapter6(Itôformulaandapplications)
• Lecture9(2x1.5h)
Chapter6(Itôformulaandapplications)
• Lecture10(2x1.5h)
Chapter7(Stochasticdifferentialequations)
• Lecture11(2x1.5h)
Chapter7(Stochasticdifferentialequations)
• Lecture12(2x1.5h)
Chapter8(Morelinkswithpartialdifferentialequations)
• Exam
Therearealsoseparateexcercisessessions(séancesdetravauxdirigés).
ii/144
iii
These are the lecture notes of an introduction course on stochastic calculus, given at Université Paris-Dauphine – PSL, for
1
secondyearmasterstudentsinmathematics .TheprerequisiteisaprobabilitytheorycoursebasedonLebesgueintegral,including
conditionalexpectation,gaussianrandomvectors,andstandardnotionsofconvergence. Theinitialversionoftheselecturenotes
was based on a course given by Halim Doss, inspired from the book by Nobuyuki Ikeda and Sinzo Watanabe [20]. The current
versionisalsoinspiredinpartfromthebooksbyFabriceBaudoin[4]andJean-FrançoisLeGall[31],andbyplentyofothersources.
Somebitsaretrulyoriginal. Bewarethattheselecturenotesaredesignedtoconstitutearichwrittenreferenceforthelivecourse.
Thelivecourseconcernsonlyastrictsubpartfocusingonintuition,selectedforbeingessentialforunderstandingtheconceptsand
techniques. Atthetimeofwriting,herearethemaindifferenceswiththewrittenlecturenotesbyHalimDossbefore2018:
• Moreonprobabilitybasics,uniformintegrability,Lebesgue–Stieltjesintegral
• Moreonmartingalesandlocalmartingales
• Moreonexamplesandapplicationseverywhere
• Moreonhistory,intuition,linkwithphysics,programming
• PropertiesofBrownianmotion,Dubins–Schwarztheorem,Feynman–Kacformula,Langevinprocesses
• Moreonsemi-martingales,stochasticintegral,andItôformula
Theselecturenotesdonotcoverseveralimportanttopicsrelatedtostochasticcalculus, suchasfineanalysisofBrownianmotion
: regularity, excursions, zeros, recurrence and transcience, etc, random time change, Euler–Maruyama schemes for numerical
analysis of stochastic differential equations, applications of stochastic calculus to finance, physics, biology, statistics, stochastic
control, and Monte Carlo methods, Malliavin calculus, Stroock–Varadhan support theorems, local times and Tanaka formula,
Schilder large deviation principle, additive functionals : law of large numbers, ergodic theorems, central limit theorems, large
deviation principles, link with entropy and Poisson equation, Doob H-transforms, Friedlin–Wentzell large deviations principle
for perturbation of dynamical systems, Feller branching diffusions, branching Brownian motion, Fisher–Wright diffusion, diffu-
sionswithjumps,space/timewhitenoise,Bakry–Émerynon-explosioncriterionandlinkwithPoincaré,logarithmicSobolev,and
isoperimetric functional inequalities, diffusions on manifolds, Eyrings-Kramers formula, etc. On the other hand, some topics are
consideredintheexams,suchasCox–Ingersoll–RossandBesselprocesses,LévyareaofplanarBrownianmotion,etc.
There are many other references on the subject. An accessible introduction are the books by Laurence Craig Evans [16] and
byBerntØksendal[49]. ThebooksbyRichardDurrett[13],PhilipProtter[42], andHui-HsiungKuo[28]arealsoaccessible. More
advanced references include the books by Michel Métivier [36], Chris Rogers and David Williams [44, 45], Daniel Stroock and
Srinivasa Varadhan [47], Ioannis Karatzas and Steven Shreve [24], Daniel Revuz and Marc Yor [43], Jean Jacod [21], Iosif Gikhman
andAnatoliSkorokhod[18], andbyClaudeDelacherieandPaul-AndréMeyer[9,10]. Finally, accessible references with exercises
includethebookbyFrancisCometsandThierryMeyre[8](inFrench)andPaoloBaldi[3]forinstance.
Contributors.
• 2018–2022: DjalilChafaï
• –2018: HalimDoss
Glitcheshunters.
• 2021–2022: PaulineAmrouche,FanirianaRakotoEndor,JustinSalez
• 2020–2021: OskarBataillon,YiHan,QiaoyuLuo,GabrielMoreira-Nogueira,DiegoAlejandroMurillo
Taborda,LyesTifoun,WalidElWahabi
• 2019–2020: OscarCosserat,ŁukaszMad˛ ry,AlejandroRosalesOrtiz,ZiyuZhou
• 2018–2019: ClémentBerenfeld
1MASEF(Mathématiquespourl’économieetlafinance)andMATH(Mathématiquesappliquéesetthéoriques).
iii/144
iv
Notation.
R+ [0,+∞)
BM Brownianmotion
O,o Landaunotation
iff if and only if
a.s. almostsurely
u.i. uniformlyintegrable
w.r.t. withrespectto
1A indicatorof A
x·y or〈x,y〉 x1y1+···+xdyd ifx,y ∈Rd
|x| qx2+···+x2 ifx∈Rd
1 d
BE Borelσ-algebraofE
e exponential
d differentialelement
i thecomplexnumber(0,1)
d,i,j,k,m,n,ℓ integernumbers
p,q,r,s,t,u,v,α,β,ε real numbers
s ∧t and s∨t min(s,t)andmax(s,t)
f is increasing f (y)≥ f (x) if y ≥ x
p d k kp
L d(Ω,P) X :Ω→R measurablewithE( X ) <∞
R
〈x,y〉H scalar productintheHilbertspaceH
〈M,N〉 anglebracketoflocalmartingalesM,N
〈M〉 〈M,M〉
[M,N] squarebracketoflocalmartignalesM,N
[M] [M,M]
X ∼µ X haslawµ
iv/144
no reviews yet
Please Login to review.