113x Filetype PDF File size 0.53 MB Source: pages.pomona.edu
Notes on the Calculus of Variations and Optimization Preliminary Lecture Notes Adolfo J. Rumbos c Draft date November 14, 2017 2 Contents 1 Preface 5 2 Variational Problems 7 2.1 Minimal Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 Linearized Minimal Surface Equation . . . . . . . . . . . . . . . . 12 2.3 Vibrating String . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3 Indirect Methods 19 3.1 Geodesics in the plane . . . . . . . . . . . . . . . . . . . . . . . . 19 3.2 Fundamental Lemmas . . . . . . . . . . . . . . . . . . . . . . . . 25 3.3 The Euler–Lagrange Equations . . . . . . . . . . . . . . . . . . . 31 4 Convex Minimization 47 4.1 Gˆateaux Differentiability . . . . . . . . . . . . . . . . . . . . . . . 47 4.2 AMinimization Problem . . . . . . . . . . . . . . . . . . . . . . . 52 4.3 Convex Functionals . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.4 Convex Minimization Theorem . . . . . . . . . . . . . . . . . . . 62 5 Optimization with Constraints 65 5.1 Queen Dido’s Problem . . . . . . . . . . . . . . . . . . . . . . . . 65 5.2 Euler–Lagrange Multiplier Theorem . . . . . . . . . . . . . . . . 67 5.3 An Isoperimetric Problem . . . . . . . . . . . . . . . . . . . . . . 78 A Some Inequalities 87 A.1 The Cauchy–Schwarz Inequality . . . . . . . . . . . . . . . . . . . 87 B Theorems About Integration 89 B.1 Differentiating Under the Integral Sign . . . . . . . . . . . . . . . 89 B.2 The Divergence Theorem . . . . . . . . . . . . . . . . . . . . . . 90 C Continuity of Functionals 93 C.1 Definition of Continuity . . . . . . . . . . . . . . . . . . . . . . . 93 3 4 CONTENTS
no reviews yet
Please Login to review.