jagomart
digital resources
picture1_Geometry Pdf 167089 | 1214427882


 120x       Filetype PDF       File size 0.72 MB       Source: projecteuclid.org


File: Geometry Pdf 167089 | 1214427882
j differential geometry 1 1967 89 97 curvature and characteristic classes of compact riemannian manifolds yuk keung cheung chuan chih hsiung in memory of professor vernon g grove introduction during ...

icon picture PDF Filetype PDF | Posted on 25 Jan 2023 | 2 years ago
Partial capture of text on file.
                J. DIFFERENTIAL GEOMETRY
                1 (1967) 89-97
                     CURVATURE AND CHARACTERISTIC
                     CLASSES OF COMPACT RIEMANNIAN
                                     MANIFOLDS
                      YUK-KEUNG CHEUNG & CHUAN-CHIH HSIUNG
                         In memory of Professor Vernon G. Grove
                                      Introduction
                  During the past quarter century the development of the theory of fi-
               bre bundles has led to a new direction in differential geometry for study-
               ing relationships between curvatures and certain topological invariants
               such as characteristic classes of a compact Riemannian manifold. Along
               this direction the first and simplest result is the Gauss-Bonnet formula
                [2], [3], which expresses the Euler-Poincare characteristic of a compact
               orientable Riemannian manifold of even dimension n as an integral of
               the n-th sectional curvature or the Lipschitz-Killing curvature times the
               element of area of the manifold. Later, Chern [5] obtained curvature
               conditions respectively for determining the sign of the Euler-Poincare
               characteristic and for the vanishing of the Pontrjagin classes of a com-
               pact orientable Riemannian manifold. Recently, Thorpe [8] extended a
               special case of Chern's conditions by using higher order sectional cur-
               vatures, which are weaker invariants of the Riemannian structure than
               the usual sectional curvature. The purpose of this paper is to further
               extend the conditions of both Chern and Thorpe.
                  In §1, for a Riemannian manifold the equations of structure are
               given, and higher order sectional curvatures and related differential
               forms are defined. §2 contains the differential forms expressing, re-
               spectively, the Euler-Poincare characteristic and the Pontrjagin classes
               of compact orientable Riemannian manifolds in the sense of de Rham's
               theorem. In §3, we first define some general curvature conditions, and
               then use them to extend the above mentioned results of Chern and
               Thorpe. The proofs of the main results (Theorems 3.1 and 3.2) of this
               paper are easily deduced from several lemmas.
                        1. Higher order sectional curvatures
               Let M be a Riemannian manifold of dimension n (and class C°°), and
                V ,V* respectively the spaces of tangent vectors and covectors at a
                 X
               point x of the manifold M. By taking an orthonormal basis in V
                                                                          x
                and its dual basis in V*, over a neighborhood U of the point x on the
               manifold M, we then have a family of orthonormal frames xe\ e
                                                                          n
                  Communicated April 20, 1967. The work of the second author was partially
               supported by the National Science Foundation grant GP-4222.
                        90 YUY-KEUNG CHEUNG & CHUAN-CHIH HSIUNG
                        and linear differential formszyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA ω±, ,ω  such that < e^ω^ > = % (= 1
                                                                       n
                        for i = j, and = 0 otherwise), and the Riemann metric is of the form
                        (l D ώa
                        Throughout this paper all Latin indices take the values 1, , n unless
                        stated otherwise. The equations of structure of the Riemann metric are
                                        du>i = ^2 ω3 Λ
                        (1-2)
                                                       k
                        and the Bianchi identities are
                                         ^2 Uj Λ Ωji = 0,
                        (1.3)
                                         dΩ + ^Γ Q  Λ α ^ - ]Γ ω^ Λ i?  = 0,
                                                          ik                              fcj
                       where the wedge Λ denotes the exterior multiplication.
                            In terms of a local coordinate system u1, , un in the neighborhood
                        C/ let
                        (1.4) βi = Σ X?d/duk.
                                                               k
                        Then
                                                                 S kωk Λ ωι
                        (1.5) Ω^ = 2 Σ iJi                                       >
                                                               k,ι
                       where
                        (1.6) Sijkl = RpqrsXfXjXkXfi
                        repeated indices implying summation over their ranges, and R s being
                                                                                                    pqr
                       the Riemann-Christoίfel tensor.
                            Throughout this paper, for indices we shall use I(p) to indicate the
                       ordered set of p integers ii, , i  among 1, , n. When more than
                                                                  p
                       one set of indices is needed at one time, we shall use other capital letters
                       such as J, H,R,S,' in addition to /. Now for an even p < n, we define
                       the following p-form:
                                                          δ     Ω    Λ       Λ Ω
                        (1.7) θ/(p) = Zji(p) hj2  ' *'                           jp-ijpi
                       where δjί 1 is + 1 (respectively — 1), if the integers ύ, , i  are distinct
                                                                                                p
                        and J(p) is an even (respectively odd) permutation of /(p); it is zero
                       in all other cases. Clearly, θ^ = Ω^. These forms θ/( ), except for
                                                                                               p
                       constant factors, were first used by Chern in [3], [5]. For an even n,
                       θ\...  is intrinsic and called the Gauss curvature form of the manifold
                             n
                       M, and the p-th Gauss curvature form studied by Eells [6] is closely
                                                                                                                                     CURVATURE AND CHARACTERISTIC CLASSES 91
                                                                                related tozyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA Θ\...   . By using equation (1.5), equation (1.7) can be written
                                                                                                                                                    p
                                                                                in the form
                                                                                (1.8) Θ/() =                                                                                   22 δi(p) Shhhih  ''' S -ij h
                                                                                                                                         P                  /2                                                                                             2                                        jp            p
                                                                                                                                                                                 P' H(p)
                                                                               where we have placed
                                                                                                     ω
                                                                                (1.9)                                                                                                    H(p) = ω  A Aω .
                                                                                                                                                                                                                                  hl                                                    hp
                                                                                              For each p-dimensional plane P in the tangent space V  of the man-
                                                                                                                                                                                                                                                                                                                                             x
                                                                               ifold M at a point x, the Lipschitz-Killing curvature at the point x of
                                                                               the p-dimensional geodesic submanifold of the manifold M tangent to
                                                                               P at the point x is called the p-Xfo sectional curvature of the manifold
                                                                               M at the point x with respect to the p-dimensional P, and is given (see
                                                                               for instance [1, p. 257]) in terms of any orthonormal basis e^, ,ei
                                                                                                                                                                                                                                                                                                                                                                                                  p
                                                                               oΐPby
                                                                                (1.10) &i{p)(n =                                                                                                 d  0 K  it! _ir _
                                                                                                                                                                              2p/                                         J(p)                Hip)             rir2SlS2                                                           rp                  pSί) 1Sp
                                                                               From the geometric structure it is obvious that Kj^(P) is indepen-
                                                                                dent of the choice of the orthonormal basis e , , e  of P. For
                                                                                                                                                                                                                                                                                                    iχ                                  ip
                                                                               p = 2,if/( ),(P) is the usual Riemannian sectional curvature of the
                                                                                                                              p
                                                                               manifold M at the point x with respect to the plane P, and for p = n
                                                                                (even), it is the Lipschitz-Killing curvature of the manifold M at the
                                                                                point x. By using equation (1.6), equation (1.10) is readily reduced to
                                                                                (i.ii) K (P) =
                                                                                                                                    I(P)
                                                                                                                                                                2. Characteristic classes
                                                                               Let V be a vector space of dimension n over the real field R, and V*
                                                                               its dual space. Then there is a pairing of V and V* into R, which we
                                                                               denote by  e R, X G V, Γ E Γ. The Grassmann algebra
                                                                               of Λ(V) of V is a graded algebra admitting a direct sum decomposition
                                                                                (2.1) A(V) = A°(V) + A\V) + + An(V),
                                                                                                                   r
                                                                               where A(V) is the subspace of all homogeneous elements of Λ(V) of
                                                                               degree r. From Λ(V) and the Grassmann algebra A(V*) of V* we from
                                                                               their tensor product A(V)®A(V*), which is generated as a vector space
                                                                               by products of the form ξ ® ξ', ξ e A(V), ξ' e A(V*). It should be
                                                                                                                                                                                                                                                                                                                      f
                                                                               remarked that if ξ' e A{V*),η e Λ(V), ξeA (V), η G Λ(V*), then
                                               92 YUY-KEUNG CHEUNG & CHUAN-CHIH HSIUNG
                                                (2.2)zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA (ξ ® £') Λ (η ® 7?') = (ξ Λ ί?) ® (£' Λ ί/).
                                                        Suppose now a scalar product be given inzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA V. We will be interested in
                                                                                     2fc                        2fc
                                               the subspace Λ (V)  Λ (F*) of A(V)  Λ(V*). If ei, , en form an
                                               orthonormal basis of V, the elements e^ Λ Λ e; , for all combinations
                                                                                                                                                                        2fc
                                                                                                                                                                                                                          2k
                                               of ii, , %2k among 1, , n, constitute an othonormal basis of Λ (V),
                                               and an element A of A2k(V) 
						
									
										
									
																
													
					
The words contained in this file might help you see if this file matches what you are looking for:

...J differential geometry curvature and characteristic classes of compact riemannian manifolds yuk keung cheung chuan chih hsiung in memory professor vernon g grove introduction during the past quarter century development theory fi bre bundles has led to a new direction for study ing relationships between curvatures certain topological invariants such as manifold along this first simplest result is gauss bonnet formula which expresses euler poincare orientable even dimension n an integral th sectional or lipschitz killing times element area later chern obtained conditions respectively determining sign vanishing pontrjagin com pact recently thorpe extended special case s by using higher order cur vatures are weaker structure than usual purpose paper further extend both equations given related forms defined contains expressing re spectively sense de rham theorem we define some general then use them above mentioned results proofs main theorems easily deduced from several lemmas let m be cla...

no reviews yet
Please Login to review.