jagomart
digital resources
picture1_Geometry Pdf 166520 | Syllabus379 0


 139x       Filetype PDF       File size 0.26 MB       Source: faculty.ksu.edu.sa


File: Geometry Pdf 166520 | Syllabus379 0
p 379 hajakqe o ne e eje ekyje b eyjee ekyje ce e 1439 e 1438 ugaje e e euclidean and non euclidean geometry ekyje ce ekyje b eyjee syllabus ...

icon picture PDF Filetype PDF | Posted on 24 Jan 2023 | 2 years ago
Partial capture of text on file.
                                                                                  	                                                                                   	                                                                          
                                                                            ‘P 379
                                                                                     
                                                                     HAJ“AKQË@ Õæ„¯ - ÐñʪË@ éJÊ¿
                                                                                                             	                                                    
           
                                                                     

                                                                      éKYJʯB@ éƒYJêË@
                                                                        
       
       
                                                                                                                                           	                            	
                                                                                                                                                                                                                                      
                                                                            éKYJʯ@ CË@ð                                                        ë 1439 - ë 1438 úGAJË@ ɒ®Ë@
                                                                               
       
      
                                                                                                                                  

                                                                                                              Euclidean and Non-Euclidean Geometry
                                                                                                                                                                                                                                                                        	
                                                                                                                                                                éKYJʯ@ CË@ð éKYJʯB@ éƒYJêË@
                                                                                                                                                                    
         
         
                                 
         
          

                                                                   Syllabus
                                                                             1. Euclidean Geometry: The Euclidean plane E2. Transformation in E2.
                                                                                                                                                                                    2                                                                                                               2
                                                                                        Theisometry group of E . Affine transformations in E . Reflections. Dilata-
                                                                                        tions. Rays and Angles. Affine symmetries. Triangles. Congruence theorems
                                                                                        for triangles. Angle sum for triangles.
                                                                                                                                                                                                                                         2                                                 2
                                                                             2. Spherical Geometry: The sphere S . Lines of S . Distance and the tri-
                                                                                                                                                                                                                2
                                                                                        angle inequality. Motions of S . Orthogonal transformations and Euler’s
                                                                                        theorem. Angles and triangles. Spherical trigonometry.
                                                                                                                                                                                                                                                                                              2
                                                                             3. Hyperbolic Geometry: The hyperbolic plane H . M¨obius transforma-
                                                                                        tions. Cross ratios. The Poincar´e disk model. Angles and distances. Circles
                                                                                        and horocycles. Hyperbolic triangles.
                                                                                                                                                                                                                                                                                                                                             Ï                                	
                                                                                                                                                                                                                                                                                                                                     PQ®Ö @ H@XQ®Ó
                                                                                                             	                2                	                                                          2                                                                    Ï                                                             	
                                                                   A®JË@                           èQÓP                .E                 ú¯              HCKñjJË@ .E                                                    øYJʯB@ øñJ‚Ö@ :éKYJʯB@                                                                                      éƒYJêË@ -1
                                                                            
                                                                 
                           
                                            
              
        
                                                       
       
        

                                                                                                                                                                                                           	                                                                                                 
                                                                                                 	                       2                                                                                                                                                        2                                                       
                                                                   . HAƒA¾ªKB@ .E                                                  øYJʯB@ øñJ‚ÒÊË éJ®ËAJË@ HCKñjJË@ .E                                                                                                                          øYJʯB@ øñJ‚ÒÊË
                                                                                                                                     
          
        
                                                   
                                      
                                              
         
        

                                                                                                                                                                                                                                                                                                                

                                                                                                                                                                                                  	                                                                                                                                              
                                                                                Ï                                                     	    Q                             Ï                                                            	     	                            	                                                                   
                                                                   . HAJÊJÖ @                       ‡KA¢ HAJë Ó .HAJÊJÖ @ . éJ®ËAJË@                                                                                        H@Q£AJJË@ .AK@ðQË@ð                                                    骃B@ .H@XYÒJË@
                                                                                                          .                                         .                                                 
                                                                 
                                                           	                     ×
                                                                                                                                                                                                                                                                                               . IÊJÖÏ@ AK@ðP ¨ñÒm
                                                                                                                                                                                                                                                                                                                           
                                 .
                                                                         	                                                                                                 	                                            	                       	                                                                                  
                                                                                                 Ì                         Ï                  	                                         Ï              2                                       Ì                   2                                                                               	
                                                                   ú¯ HA¿Qm '@ .HAJÊJÖ @ éJKAJJÓð é¯A‚Ö @ .S                                                                                                         ú¯  ñ¢m '@ .S                                               èQºË@ : éKðQºË@ éƒYJêË@ -2
                                                                     
                                                                            
 .                                                         
                         
                                                              
                              
                                                                                                                     Ï                                                     Ï                              	                                    	     Q                                      Ï                                                       2
                                                                         . éKðQºË@ HAJÊJÖ @ HA‚k .HAJÊJÖ @ð AK@ðQË@ .QÊKð@ éJë Óð èYÓAªJÖ @ HCKñjJË@ .S
                                                                               
                                                          .                                                           
                             
                            .                                                           

                                                                                                                                                                                                              
                                                                                           	                                     	                                                                                        2                    
                                                            
                              	
                                                                                                         Q                                                                                                  '                                              	                                  Ï                             	
                                                                   Q¯ .éJ®¯@ Ë@ éJ‚Ë@ .€ñJKñÓ HCKñm                                                                                                                  .H øYK@QË@ øñJ‚Ö@ :éKYK@QË@ éƒYJêË@ -3
                                                                                              
                               .                                  
.                                
                                        
                                                                  

                                                                                                                                
                                                                      
                             
                                 	                                     
                                                                                                                                       	                      Ï                     	        	                                                                                            Ï                        	                              	
                                                                                                                   . éKYK@QË@ HAJÊJÖ @ . éJKAÓQË@ QK@ðYË@ð QK@ðYË@ .HA¯A‚Ö @ð AK@ðQË@ . éKPA¾K@ñK
                                                                                                                         
                                                          
                                                                                                                       
                          
                       .
                                                                   Textbooks
                                                                             1. Euclidean and Non-Euclidean Geometry: An Analytic Approach, by Patrick
                                                                                        J. Ryan, Cambridge: Cambridge University Press (1986).
                                                                             2. Modern Geometries: Non-Euclidean, Projective, and Discrete Geometry, by
                                                                                        Michael Henle, 2nd edition, Prentice-Hall, (2001).
                                                                                                                                      	                            	
                                                                                                                                           
                                                                   ë 1438-1439 úGAJË@ ɒ®Ë@                                                                                                                                                                                                                                             úæËA£ ½ËAÓ .X
                                                                                                                                   
                                                                                                                                                                                                      
 .
The words contained in this file might help you see if this file matches what you are looking for:

...P hajakqe o ne e eje ekyje b eyjee ce ugaje euclidean and non geometry syllabus the plane transformation in theisometry group of ane transformations reections dilata tions rays angles symmetries triangles congruence theorems for angle sum spherical sphere s lines distance tri inequality motions orthogonal euler theorem trigonometry hyperbolic h m obius transforma cross ratios poincar disk model distances circles horocycles i pq xq a je eqop u hcknjje oyje onjo haa kb onjoee ej eaje q hajejo ka haje ajje ak qe xyoje...

no reviews yet
Please Login to review.