139x Filetype PDF File size 0.26 MB Source: faculty.ksu.edu.sa
P 379 HAJAKQË@ Õæ¯ - ÐñʪË@ éJÊ¿ éKYJʯB@ éYJêË@ éKYJʯ@ CË@ð ë 1439 - ë 1438 úGAJË@ É®Ë@ Euclidean and Non-Euclidean Geometry éKYJʯ@ CË@ð éKYJʯB@ éYJêË@ Syllabus 1. Euclidean Geometry: The Euclidean plane E2. Transformation in E2. 2 2 Theisometry group of E . Affine transformations in E . Reflections. Dilata- tions. Rays and Angles. Affine symmetries. Triangles. Congruence theorems for triangles. Angle sum for triangles. 2 2 2. Spherical Geometry: The sphere S . Lines of S . Distance and the tri- 2 angle inequality. Motions of S . Orthogonal transformations and Euler’s theorem. Angles and triangles. Spherical trigonometry. 2 3. Hyperbolic Geometry: The hyperbolic plane H . M¨obius transforma- tions. Cross ratios. The Poincar´e disk model. Angles and distances. Circles and horocycles. Hyperbolic triangles. Ï PQ®Ö @ H@XQ®Ó 2 2 Ï A®JË@ èQÓP .E ú¯ HCKñjJË@ .E øYJʯB@ øñJÖ@ :éKYJʯB@ éYJêË@ -1 2 2 . HAA¾ªKB@ .E øYJʯB@ øñJÒÊË éJ®ËAJË@ HCKñjJË@ .E øYJʯB@ øñJÒÊË Ï Q Ï . HAJÊJÖ @ KA¢ HAJë Ó .HAJÊJÖ @ . éJ®ËAJË@ H@Q£AJJË@ .AK@ðQË@ð éªB@ .H@XYÒJË@ . . × . IÊJÖÏ@ AK@ðP ¨ñÒm . Ì Ï Ï 2 Ì 2 ú¯ HA¿Qm '@ .HAJÊJÖ @ éJKAJJÓð é¯AÖ @ .S ú¯ ñ¢m '@ .S èQºË@ : éKðQºË@ éYJêË@ -2 . Ï Ï Q Ï 2 . éKðQºË@ HAJÊJÖ @ HAk .HAJÊJÖ @ð AK@ðQË@ .QÊKð@ éJë Óð èYÓAªJÖ @ HCKñjJË@ .S . . 2 Q ' Ï Q¯ .éJ®¯@ Ë@ éJË@ .ñJKñÓ HCKñm .H øYK@QË@ øñJÖ@ :éKYK@QË@ éYJêË@ -3 . . Ï Ï . éKYK@QË@ HAJÊJÖ @ . éJKAÓQË@ QK@ðYË@ð QK@ðYË@ .HA¯AÖ @ð AK@ðQË@ . éKPA¾K@ñK . Textbooks 1. Euclidean and Non-Euclidean Geometry: An Analytic Approach, by Patrick J. Ryan, Cambridge: Cambridge University Press (1986). 2. Modern Geometries: Non-Euclidean, Projective, and Discrete Geometry, by Michael Henle, 2nd edition, Prentice-Hall, (2001). ë 1438-1439 úGAJË@ É®Ë@ úæËA£ ½ËAÓ .X .
no reviews yet
Please Login to review.