152x Filetype PDF File size 0.15 MB Source: jbusemey.pages.iu.edu
Notes on Classical Dynamics References: Marion, J. B. & Thornton, S. T. (1995) Classical dynamics of particles and th systems. 4 Ed. Saunders. nd Shankar, R. (1994) Principles of quantum mechanics. 2 Ed. Plenum. Newtonian Mechanics (1687) Notation: (d/dt)x(t) = x'(t) F = m x'' , i = 1 to n i i i p = m × x' = Momentum in Cartesian coordinates i i i Then p' = F i i Example: Simple Harmonic Oscillator x = displacement of pendulum along horizontal axis Hooks law for restoring force (linear approximation for small displacements) F = - k x 2 2 m x'' = -k x, or x'' + w x = 0 , with w = (k/m) and with x'(0) = 0 The solution is x(t) = x(0)cos(wt), We can define a potential U when work done is path independent: dW = increment in work and U = òdW = òFdx Under this condition, F = - (¶ U /¶ x) i i For the simple harmonic oscillator: 2 U= òFdx = òkx dx = k x /2 Euler Equation (1744) A[y(t)] = òL( y , y') dt for i < t < f . Find Extremum of A. Suppose x(t) is an extremum. Define y(a,x(t)) = x(t) + a× n(t) for some constant a and n(t) is an arbitrary function with n(i) = n(f) = 0. A necessary condition for an extremum is that (¶/¶a)A |a=0 = 0. (¶/¶a)A = ò(¶/¶a)L( y , y') dt = ò [ (¶L/¶y) (¶y/¶a) + (¶L/¶y') (¶y'/¶a) ] dt (¶y/¶a) = n(t) and (¶y'/¶a) = n'(t) so (¶/¶a)A = ò [(¶L/¶y)n(t) + (¶L/¶y') n'(t)] dt Now we use integration by parts on the second term. Recall (fg)' = f ' g + f g' => ò (fg)' = ò f 'g + òf g' => òf g' = fg | - ò f 'g (i,,f) substituting f = (¶L/¶y') , f ' = (¶L/¶y')' g = n(t), g' = n'(t), then ò (¶L/¶y') n'(t) = (¶L/¶y')n(t)| - ò (¶L/¶y)'n(t)dt (i,f) (¶L/¶y')n(t)| = 0 because n(i) = n(f) = 0. (i,f) Therefore (¶/¶a)A| = ò [(¶L/¶y) - (¶L/¶y')']× n(t) dt | = 0 a=0 a=0 for any n(t) implies [(¶L/¶y) - (d/dt)(¶L/¶y')] = 0 (Euler's Equation).
no reviews yet
Please Login to review.